先前的研究表明,call体(CC)和心理理论(TOM)能力之间的联系(ACC)之间存在联系,但健康孩子中CC量与Tom之间的关系仍不清楚。本研究检查了CC数量是否影响儿童在评估假装,情感识别和错误信念的理解的TOM任务上的表现。6-12岁的40名儿童接受了结构磁共振成像(MRI)和认知测试电池。我们发现,CC的较大的中部和中央小节与更好的TOM能力显着相关。我们还可以证明年龄和性别相关的影响,因为CC – TOM的关系在年轻(6-8岁)及以上(9-12岁)的儿童以及女性和男性参与者之间。重要的是,年龄较大的孩子驱动了CC中部和中央小节量和TOM能力之间的关联。这项研究是第一个证明CC大小与健康儿童的能力相关的一项研究,强调了CC在其社会认知发展中起着至关重要的作用。CC小节的体积不仅可以作为已知表现出社会认知缺陷的神经发育群体中异质性的量度,而且还可以作为典型发展的儿童的量度。
早产儿是一个高度脆弱的人群。这些婴儿的总脑体积(TBV)可以通过脑超声(US)成像来准确估算,从而可以对新生儿重症监护(NICU)入院期间对早期大脑生长进行纵向研究。对3D图像的TBV自动估算可提高诊断速度,并逃避专家手动分段3D图像的必要性,这是一项精致且耗时的任务。我们开发了一种深入学习方法来从3D超声图像中估算TBV。它从深度卷积神经网络(CNN)带来了延伸的残留连接和额外的层,灵感来自模糊C均值(FCM),以进一步将特征分离为不同的区域,即筛分层。因此,我们称此方法为深卷积神经网络(DSCNN)。使用从两个不同的超声设备中获取的两个数据集进行了TBV估计,以包括Alexnet-3D,Resnet-3D和VGG-3D在内的三种最新方法进行验证。结果突出显示了预测与观察到的TBV值之间的密切相关性。回归激活图用于解释DSCNN,从解剖学的角度探索那些更一致和合理的像素来允许TBV估计。因此,它可用于从3D图像中直接估算TBV,而无需进一步的图像分割。
国防部文职人员管理系统:国防文职情报人员系统生效调整 发起部门:国防部人事和战备副部长办公室 生效日期:2023年10月30日 发布方式:获准公开发布。可在指令司网站 https://www.esd.whs.mil/DD/ 上查阅。 重新发布和取消:国防部指令 1400.25,第 2004 卷,“国防部文职人员管理系统:国防文职情报人员系统 (DCIPS) 生效调整 (AIF)”,2011 年 9 月 16 日,经修订 批准人:国防部人事和战备副部长 Gilbert R. Cisneros, Jr. 目的:本指令由几卷组成,每卷都有自己的目的。根据国防部指令 5124.02 和 1400.25 中的授权:
精神病经历(PES)发生在5 - 10%的一般人群中,并且与儿童创伤和产科并发症有关。然而,这些关联下的神经生物学机制尚不清楚。使用了父母和孩子的雅芳纵向研究(ALSPAC),我们研究了138名20岁的年轻人(n = 49个怀疑,n = 53,定义,n = 36个精神病)和275个对照。Voxel-based morphometry assessed whether MRI measures of grey matter volume were associated with (i) PEs, (ii) cumulative childhood psychological trauma (weighted summary score of 6 trauma types), (iii) cumulative pre/peri-natal risk factors for psychosis (weighted summary score of 16 risk factors), and (iv) the interaction between PEs and cumulative trauma or pre/peri-natal risk.pes与较小的左后扣带回(p fwe <0.001,z = 4.19)和丘脑体积(p fwe = 0.006,z = 3.91)有关。累积前/围产期风险与较小的左下扣带回体积有关(P FWE <0.001,Z = 4.54)。A signi fi cant interaction between PEs and cumulative pre/perinatal risk found larger striatum ( p FWE = 0.04, Z = 3.89) and smaller right insula volume extending into the supramarginal gyrus and superior temporal gyrus ( p FWE = 0.002, Z = 4.79), speci fi cally in those with de fi nite PEs and psychotic disorder.累积的儿童创伤与较大的左背纹状体(P FWE = 0.002,Z = 3.65),右前额叶皮层(P FWE <0.001,Z = 4.63)和所有参与者中较小的左岛体积相关(P FWE = 0.03,Z = 3.60),并且与PES组无关。总而言之,预/周期的危险因素和儿童心理创伤会影响相似的大脑通路,即较小的岛状和较大的纹状体体积。在患有更严重的PE的患者中,前/围产期风险的影响最大,而在所有参与者中都看到创伤的影响。总而言之,环境风险因素会影响与精神分裂症有关的大脑网络,这可能会增加个人发展以后精神病的倾向。
理解和映射人类连接是神经科学的长期努力,但是在冷冻调查过程中,与人脑大脑的大尺寸相关的显着挑战尚未解决。虽然较小的大脑(例如啮齿动物和果果会)一直是以前连接项目的重点,但较大的人脑的处理需要显着的技术进步。这项研究解决了在对齐的神经解剖坐标中冻结大脑的问题,其组织损伤最小,从而促进了大规模无变形的冷冻效果。我们报告了最有效,最稳定的冰点技术,该技术利用了适当的冷冻保护和利用工程工具(例如大脑主图案,定制设计的模具以及连续的温度监测系统)的适当选择。这种冻结的标准化方法可实现高质量的无失真组织学,使全世界的研究人员能够在细胞水平上探索人脑的复杂性。我们的方法结合了神经科学和工程技术,可以通过有限的资源来应对这一长期存在的挑战,增强了大型科学努力以外的发达国家的努力,促进了多种方法,并促进了合作。
不稳定性发生在固态复合阴极(SSC)中,该阴极(SSC)由阴极活性材料(CAM),SE和通常碳添加剂的颗粒混合物组成。氧化物和硫化物是SE的两个最精心研究的群体。氧化物类型的SE具有优势,包括高机械强度,高温耐受性,对空气和溶剂的稳定性以及广泛的电化学稳定窗口。11然而,基于氧化物的刚性SE不能在没有高温烧结的情况下在颗粒和晶粒之间形成良好的联系。高温烧结将导致CAM和氧化物之间的不希望的元素分化。12–14因此,在大多数类型的阴极中形成直接的阴极/氧化物部分接触是具有挑战性的。不同于氧化物,基于硫化物的SE具有高离子电导率和低/中等温度下的可变形性,希望将电极处理到高,接近理论密度。15–20然而,硫化物易于在CAM(例如Li(Ni X Co Y Mn 1-X-Y)O 2和Li(Ni X Co Y Al 1-X-Y)O 2)的工作势下氧化。21–23即使凸轮颗粒涂有保护层(例如,氧化物),这些保护层部分钝化了表面,例如电子渗透所需的碳添加剂,例如碳纳米诺纤维(CNF),也可能在氧化硫化物电解质中发挥作用。24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。 26–30凸轮颗粒本身的破裂也可能发生。 每个凸轮都合并24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。26–30凸轮颗粒本身的破裂也可能发生。每个凸轮都合并从机械上讲,在诱导的插入/提取时,li-ion插入/提取的循环体积变化会导致硫化物SE,CNF和CAM之间的突然或进行性接触损失,从而导致无能力失效和不可逆转的能力损失。31–34为了减轻某些机械效应(以及由于亚最佳电极制备引起的持续孔隙率),细胞可能会在循环测试期间受到超过50 MPa的一层堆栈压力。然而,实践应用需要较低的堆栈压力,例如在电动汽车中,35,36,并且压力过大可能会加速凸轮的损坏并导致LI金属电极的变形。鉴于SSC容量褪色机制的这种复杂性和相互作用,机械降解与化学和电化学侧反应的分离对于阐明发生的各种过程并寻找相应策略至关重要。在这里,我们研究了CAM体积变化和堆叠压力对SSC容量衰减的影响。两种具有相同电压窗口的活性材料,但循环过程中的不同体积变化是Chos的,包括Li 4 Ti 5 O 12(LTO),具有可忽略不计的volume变化和α-NB 2 O 5,其中4%的LI Intercalation in Intercalation 37,38比较了内在的伏特 - UME对已保留能力变化的影响。
1 美国纽约哥伦比亚大学欧文医学中心/纽约州精神病学研究所精神病学系;2 美国哥伦比亚市南卡罗来纳大学统计学系;3 美国华盛顿州美国科学家联合会华盛顿分校;4 美国巴尔的摩市约翰霍普金斯大学电气与计算机工程系;5 美国纽约哥伦比亚大学心理学系;6 美国密尔沃基 Advocate Aurora Health;7 美国宾夕法尼亚州费城托马斯杰斐逊大学神经内科系;8 巴西圣保罗联邦大学精神病学系;9 巴西圣保罗联邦大学儿科学系;10 巴西圣保罗联邦大学妇科学系; 11 美国加利福尼亚州洛杉矶南加州大学精神病学系和 12 美国北卡罗来纳州达勒姆杜克大学精神病学系
在气候变化中,极端温度、干旱、盐度和重金属毒性等非生物胁迫严重影响植物的生长和生产力,导致形态发育受损并对植物健康产生负面影响(Hasanuzzaman 和 Fujita,2022;Bhardwaj 等,2023)。这些胁迫会导致植物的形态变化,例如芽和根生长减缓、花药开裂不良、花粉活力丧失、花朵掉落增加、花朵受精减少、种子萎缩和灌浆期缩短。此外,叶片衰老、失绿、坏死、灼伤和脱落进一步加剧了对植物生长的不利影响。 ( Saxena 等人,2019 年;Dumanovic ́ 等人,2021 年;Hasanuzzaman 和 Fujita,2022 年;More 等人,2023 年)。为了抵消这些有害影响,植物采用了各种适应和耐受机制。最近的研究集中于揭示植物对非生物胁迫的反应机制。生理干预,例如由脱落酸 (ABA) 信号通路介导的气孔调节、离子稳态和渗透调节,对于植物适应干旱和盐胁迫至关重要( Kuromori 等人,2022 年;Li 等人,2020 年)。此外,活性氧 (ROS) 清除酶和抗氧化系统在减轻热诱导的氧化损伤和促进耐热性方面的作用也已得到阐明(Dumanovic ́ 等人,2021 年;Mittler 等人,2022 年)。激素信号通路与抗氧化防御系统、离子稳态和渗透调节的相互作用也已得到强调(Ramegowda 等人,2020 年;Singhal 等人,2021 年)。全基因组转录组研究为转录因子、microRNA 和应激反应蛋白等应激反应基因提供了宝贵的见解(Liu 等人,2022 年)。CRISPR-Cas9 技术已成功应用于开发抗非生物胁迫作物,这得益于用于设计合适 CRISPR/Cas9 的生物信息学工具
1 s t a n f o r d u n i v e r s i t y,s t a n f o r d,c a,u s a; 2 b r i g h a m a n d wo m e n's h o s p i t a l,h a r v a r d i c a l s c a l s c h o o l,b o s t o n,m a,m a,m a,u s a; 3 i m p e r i a l c o l e l e g e h e a l t h c a r e n h s t tr u s t,l o n d o n,u k; 4 u n i v e r s i t y h o s p i t a l s o f l e u v e n,l e u v e n,b e l g i u m; 5 H O U S T O N M E T H O D I S T H O S P I T A L / We I L L C O R N E L M E D I C I N E,H O U S T O N,T X,T X,U S a; 6 U C D A V I S M E D I C A L C E N T E R,S A C R A M E N T O,C A,U S A; 7 u n i v e r s i t y o f n e b r a s k a m e d i c a l c e l c e n t e r,o m a h a a,n e,u s a; 8 wa s h i n g t o n u n i v e r s i t y s c h o o o o l o f m e d i c i n e,s t。l o u i s,m o,u s a; 9 t h e o h i o o s t e t e u n i v e r s i t y t y y x n e r m e d i c a l c e n t e r,c o l u m b u s,o h,o h,u s a; 1 0 g e n e r a l u n i v e r s i t y h o s p i t a l,p r a g u e,c z e c e c h r e p u b l i c; 1 1 G r e a t e r L o s A n g e l e s VA H e a l t h c a r e S y s t e m a n d D a v i d G e f f e n U C L A S c h o o l o f M e d i c i n e, L o s A n g e l e s , C A , U S A ; 1 2 U N I V E R S I T Y O F K A N S M E D I C A L C A L C A L C A L C A L C A L C A L C A L C A L C A L C A N S C I T Y,K S,K S,U S A; 1 3 T H E U N I V E R S I T Y O F M E L B O U R N E T S T。v i n c e n t's h o s p i t a l,f i t z r o y v i c,a u s t r a l i a a; 1 4 u n i v e r s i t y o f r o c h e s t e r m e d i c a l c e l c e n t e r,r o c h e s t e r,n y,n y,u s a; 1 5 f l u i d d a,i n c。,n e w yo r k,n y,u s a; 1 6 g o s s a m e r b i o,i n c。,s a n d i e g o,c a,u s a; 1 7 u n i v e r s i t y o f m i c h i g a n,a n n a r b o r,m i,u s a; 1 8 m a y o c l i n i c,r o c h e s t e r,m n,u s a; 1 9 j u s t u s -l i e e b i g -u n i v e r s i t y g i e s s e n,g i e s s e n,g e r m a ny; 2 0 u n i v e r s itépar i s -s a c l ay,l e k r e m l i n -b icêt r e,f r a n c e
致癌融合驱动因子在血液癌症中很常见,因此是未来基于 CRISPR-Cas9 的治疗策略的相关靶点。然而,患者断点位置的变化对传统的断点靶向 CRISPR-Cas9 介导的破坏策略构成了挑战。在这里,我们提出了一种新的双内含子靶向 CRISPR-Cas9 治疗策略,用于靶向 5-10% 的新生急性髓系白血病 (AML) 中发现的 t(8;21),该策略可有效破坏融合基因,而无需事先确定断点位置。与非 t(8;21) AML 对照相比,在 RUNX1-RUNX1T1 双内含子靶向破坏后,AML t(8;21) Kasumi-1 细胞的体外生长率和增殖率分别降低了 69% 和 94%。此外,与对照组相比,注射了 RUNX1-RUNX1T1 破坏的 Kasumi-1 细胞的小鼠体内肿瘤生长减少了 69% 和 91%。这些发现证明了 RUNX1-RUNX1T1 破坏的可行性,在从被诊断为 AML t(8;21) 的患者身上分离的原代细胞中得到了证实。总之,我们证明了 AML t(8;21) 中双内含子靶向 CRISPR-Cas9 治疗策略的原理验证,而无需精确了解断点位置。