这项调查是在塔拉科塔(Terracotta)戒指中采集的陶土样品,预计将在铁器时期建造,在印度泰米尔纳德邦(Tamil Nadu)的Pattaraiperumbubudur发掘。借助EDX,XRD和TG-DTA检验,使用FE-SEM检查样品,以找到样品的矿物组成,形态和生产技术。来自XRD结果很明显,样品中石英和长石的百分比较高。使用FE-SEM测试,在氧化气氛下发现点火温度在600-900°C之间。使用吸水和孔隙率测试研究了样品的物理特性,该测试对样品的多孔结构较少,从而想出了较低的燃烧温度。通过TG-DTA测试估计制造时的射击温度为600-900°C,它也与FE-SEM和孔隙率一致。
To determine the thickness of the Sr 2 RuO 4 /NdGaO 3 (110) film, we used a lab-based x-ray diffractometer (Rigaku) and Cu-K α radiation to measure x-ray diffraction (XRD) data at room temperature along the specular crystal trun- cation rod of the Sr 2 RuO 4 thin film/NdGaO 3 substrate, as shown in图s2(a)。从纤维晶体中具有有限尺寸的相干散射,沿平面外方向产生特征性的干扰条纹,即在围绕每个原发性纤维峰的固定强度中,即sec- ondary maxima和minima。这些条纹之间的间距与Crystallites中的层总数成反比;同时,每个结晶石中层之间的平均平面间间距C/ 2确定每个主要纤维峰沿 div>中心的何处
摘要:本研究计划利用印度楝花提取物生物合成 ZnONPs,以预测其抗菌和抗真菌活性。用紫外-可见光谱 (UV-vis)、X 射线衍射仪 (XRD)、傅里叶变换红外光谱 (FT-IR)、扫描电子显微镜 (SEM) 和 EDAX 对用印度楝花提取物合成的 ZnONPs 进行了表征。本研究还涵盖了光催化降解活性 (UV-vis)。XRD 研究显示了 ZnONPs 的晶体结构。SEM 研究给出了粒子聚集的概念。使用圆盘扩散法,在含有印度楝花提取物的 ZnONPs 的抗菌和抗真菌活性中获得了最大抑制区。关键词:ZnO 纳米粒子 (NPs)、印度楝花提取物 (NFE)、光催化降解活性、抗菌和抗真菌活性
天然粘土是一种具有各种好处并且在环境中丰富的材料。这项研究将研究来自印度尼西亚东爪哇的Tulungagung的天然粘土的特征。这项研究使用了来自Tulungagung的两个天然粘土-1(NC-1)和天然粘土2(NC-2)样本,贡登区Sidem村。在室温下将天然粘土干燥2天,然后使用100个网状筛粉碎和筛分。X射线衍射(XRD),X射线荧光(XRF),红外光谱(IR)和扫描电子显微镜(SEM)已用于表征自然粘土。XRF分析表明,Tulungagung天然粘土的主要成分是Fe,Si和Al。Montmorillonite,Quartz和Aratase是主要的天然粘土矿物。SEM的结果表示不均匀的材料表面。关键字:自然粘土;化学成分;矿物质含量;形态学
绿色纳米技术的发展引起了研究人员的极大关注,特别是在纳米颗粒的生态合成方面。这项研究介绍了使用山茶菜叶片中提取物的提取物的稳定氧化锌纳米颗粒(ZnO NP)的生物合成。使用紫外线可见光谱(UV-VIS),红外光谱(IR)和X-Ray衍射(XRD)分析来表征合成的纳米颗粒。结果表明,茶花叶提取物有效地降低了锌离子形成氧化锌纳米颗粒。XRD分析证实了ZnO的晶体结构,纳米颗粒的尺寸范围为26-38 nm。这种生物合成方法提供了一种快速,可持续和环保的方法来产生稳定的氧化锌纳米颗粒,从而在各个领域提供了潜在的应用。©2025 SPC(SAMI Publishing Company),《亚洲绿色化学杂志》,用于非商业目的。
在这项研究中,使用溶液燃烧方法在500°C的温度下成功合成了0.95zno-0.5cuO纳米复合材料6小时。使用X射线衍射(XRD)和紫外可见(UV-VIS)光谱分析材料的结构和光学特性。使用针对大肠杆菌(大肠杆菌)的琼脂井扩散法测试了抗菌特性。XRD分析显示尖锐的Bragg峰,表明纳米复合材料的高结晶度。该材料表现出六边形(ZnO)和单斜晶(CUO)相的混合物。计算的结晶石尺寸为20.18 nm,确认了复合材料的纳米级结构。UV-VIS光谱学在紫外线下显示出光学活性,测得的光条间隙为3.11 eV。抗菌测试显示出令人鼓舞的结果,复合材料在15.6 mg/ml浓度的抑制区直径为15.12 mm,针对大肠杆菌。
摘要:使用X射线衍射(ZNONP)和合成的ZnO/精氨酸/酪氨酸/酪氨酸纳米复合材料(ZAT)的合成合成的ZnO纳米粒子(ZnONPS)(ZAT),使用X射线衍射(XRD),傅立叶衍射(XRD),傅立叶变换(FTIR)光谱(FTIR)光谱,扫描电子显微镜(SEM),EDRAREN MICROSCOPY(SEM),RECTER(SEM),RESCERES(SEM),RESCERIVES(SEMREX),RESCERIVES(SEMREX)群集(启用元件盒零件盒零件盒)荧光(XRF),动态光散射(DLS)和Brunauer-Emmett-Teller(BET)分析。使用电位动力学极化(PDP),电化学阻抗光谱(EIS),重量分析和原子吸收光谱(AAS)研究了ZnONP和ZAT在1 M HCl中的腐蚀抑制疗效。XRD分析表明,Znonps和Zat是晶体的,平均结晶石尺寸分别等于28.57 nm和32.65 nm。从DLS分析中发现,ZnONP和ZAT的流体动力大小分别为34.99 d.nm和36.57 d.nm。XRF确认Znonps的合成和证实的XRD,FTIR和EDX结果。PDP分析表明,Znonps和Zat显示出混合型抑制剂倾向。 腐蚀电流密度(ICORR)在存在ZnONP和ZAT的情况下降低,在每个抑制剂的1000 ppm存在下,抑制效率分别为92.4%和98.5%。 电荷转移电阻值在存在抑制剂的情况下降低,这表明在碳钢表面形成保护膜。 电化学分析结果与重量法和AAS分析结果一致。PDP分析表明,Znonps和Zat显示出混合型抑制剂倾向。腐蚀电流密度(ICORR)在存在ZnONP和ZAT的情况下降低,在每个抑制剂的1000 ppm存在下,抑制效率分别为92.4%和98.5%。电荷转移电阻值在存在抑制剂的情况下降低,这表明在碳钢表面形成保护膜。电化学分析结果与重量法和AAS分析结果一致。
材料测试对于在生产周期的各个阶段鉴定陶瓷至关重要——从原材料验证到成品成型部件的特性分析。在本文中,我们重点介绍了几种用于陶瓷化学和结构分析的关键仪器方法:体相和微尺度应用中的 X 射线荧光(分别为 XRF 和 µXRF)、粉末 X 射线衍射 (XRD) 和 X 射线显微镜 (XRM)。XRF 测量提供有关化学和元素组成的信息,可用于定性和定量实验。体相 XRF 方法用于测试原始原料,以验证试剂纯度以及中间产品和最终产品中所需的比例。µXRF 在受限的物理区域内提供类似的信息,允许对零件和表面进行元素映射。XRD 可以识别
摘要研究了一种具有预设计的孔特性的三维晶格羟基磷灰石支架,研究了一种基于水性的挤出制造(ABEF)。通过0.8毫米喷嘴挤出了基于水的羟基磷灰石糊,并根据计算机辅助设计(CAD)文件在室温下逐层沉积。使用数字显微镜表征了绿体和烧结体的形态。使用XRD分析相纯度。傅立叶变换红外光谱(FTIR)。当前的研究证实了产生三维晶格羟基磷灰石支架的可能性,而没有任何杂质,如XRD和FTIR技术所示。结构化大量羟基磷灰石生物陶瓷的形态分析显示互连的宏孔和微孔。它将有可能在毛孔中定植成骨细胞,纤维血管向内生长,最后是新骨形成的沉积。
在部分 (I) 中,我们构建了 Martini 3 粗粒 (CG) 分子动力学 (MD) 模型来描述 CNC 的不同晶体结构(包括 I β /II/III I )。随后,我们研究了 COO − 修饰的 CNC I β 在 NaCl 水溶液中的分散和聚集特性,发现结果与实验观察结果一致。此外,基于为纤维素 I β /II 开发的拓扑结构,我们研究了纤维素晶体的再生过程。X 射线衍射 (XRD) 用于监测再生过程中的结构变化和微晶形成。XRD 结果表明再生纤维素晶体为纤维素 II,与实验测量结果一致。在部分 (II) 中,我们使用我们开发的 TW 模型探索了光在透明木材 (TW) 中的传播,即纤维素/PMMA 复合材料。这些模型是通过在 SEM 图像中识别纤维素纤维结构来构建的。我们采用了射线追踪,一种