自闭症谱系障碍 (ASD) 是一种神经发育疾病,其特征是持续存在社交沟通和互动障碍,以及行为、兴趣或活动模式受限且重复 (1)。ASD 患者面临的常见并发问题之一是睡眠障碍,表现为入睡困难、夜间频繁醒来和睡眠质量差 (2,3)。ASD 患者的睡眠问题与一系列负面后果有关,包括核心自闭症症状加剧、白天功能受损以及患者及其家人的生活质量下降 (4,5)。近年来,智能手机、平板电脑和电脑等智能技术的普及在日常生活中越来越普遍,包括 ASD 患者。虽然这些设备可以提供教育和娱乐价值,但人们担心它们的使用可能会影响睡眠质量,尤其是蓝光发射和刺激内容 (6-8)。初步研究表明,睡前过度看屏幕和接触蓝光可能会扰乱自然的睡眠-觉醒周期和褪黑激素的产生,导致入睡困难和睡眠片段化(9-11)。我们可以通过时间生物学和认知行为框架的视角来理解智能技术对睡眠质量的影响。根据时间生物学理论,接触电子设备屏幕发出的蓝光会阻碍褪黑激素的分泌,扰乱调节睡眠-觉醒周期的昼夜节律(9)。褪黑激素是由松果体产生的一种激素,在启动睡眠和确保睡眠质量方面起着至关重要的作用。接触蓝光,尤其是在晚上,会延缓褪黑激素水平的上升,使入睡变得更加困难(11-17)。此外,失眠的认知行为模型 (18) 表明,睡前从事刺激或唤醒活动(如玩游戏或浏览社交媒体内容)可增强认知和生理唤醒,从而使入睡更加困难。该模型提出,失眠症患者会形成与睡眠相关的不良习惯和思维模式,从而使睡眠障碍持续存在 (19)。对于患有自闭症谱系障碍 (ASD) 的人来说,智能科技对睡眠质量的影响可能尤其显著。许多 ASD 患者在感觉处理方面面临挑战 (20),这可能使他们对蓝光和电子内容的刺激作用更加敏感。此外,当科技扰乱睡前常规时,ASD 的核心症状(如过渡困难和坚持常规)可能会加剧 (2)。事实上,初步研究表明,自闭症儿童和青少年的屏幕时间增加与睡眠质量较差之间存在关联(12、13)。尽管自闭症患者的睡眠障碍患病率很高,且影响深远,但关于智能技术对这一人群睡眠质量的具体作用的研究却很少。虽然有少数研究发现了儿童屏幕时间增加与睡眠质量较差之间的关联,但
本新闻稿包含某些前瞻性陈述,包括有关Inmedix的临床前研究计划和产品能力计划的不限制陈述。您被告知,这种前瞻性陈述不能保证未来的绩效,涉及Inmedix业务中固有的风险和不确定性,这些风险和不确定性可能会显着影响预期的结果,包括不受限制,开发进展,临床测试和监管部门的批准,原材料和人员成本以及立法,财产,财产,财政和其他监管措施的发展。所有前瞻性陈述都是由本警告声明完整的,并且Inmedix没有义务修改或更新任何前瞻性声明,以反映本发行新闻发布会后的事件或情况。
开发解决方案本报告提出了一种总体风险评估方法,用于评估通过气候变化对关键基础设施构成的风险。虽然提出的方法是通过审查国家和国际研究以及作者在开发风险评估方面的经验而开发的,但成功实现该项目目标的关键要素是与多个基础设施部门的关键利益相关者的广泛互动。这种参与提供了有关当前实践以及实施有意义的风险评估时面临的挑战和障碍的宝贵信息。同样,跨部门利益相关者的存在强调了确保可以实现跨部门的风险方法评估基础设施的机会和挑战。从这些交互中,提出了有关关键问题的建议,例如数据收集,数据共享,数据安全,资源需求和监视制度,可以在爱尔兰语境中合理实施。
第 1 剂 6 周 第 1 剂和第 2 剂之间至少间隔 4 周 ● 回顾性地:1) 2009 年 8 月 7 日或之后接种的最后一剂必须在 4 岁或 4 岁之后接种,并且与前一剂间隔至少 6 个月。 2) 在 2009 年 8 月 7 日之前接种了 4 剂(两剂之间至少间隔 4 周和/或在 4 岁之前接种)的学生已满足要求。 ● 2016 年 4 月 1 日之前接种的 OPV 将被视为三价疫苗,因此可以接受,无论接种年龄或国家/地区如何。2016 年 4 月 1 日或之后接种的任何 OPV 剂量都被视为二价疫苗,因此不可接受。 ● 在美国,不建议 18 岁或以上的个人接种脊髓灰质炎疫苗;但是,上学仍需要完整的系列疫苗。
● 中西部北部 Kernza® 种子经销商、谷物买家和分销商 ● 建立跨区域网络的协作并发展合作伙伴关系,包括新/现有的种植者和产品制造商 ● 开发 Kernza 供应链以解决采用障碍和扩大种植面积以最大限度地发挥气候和水资源效益 ● 注册 Kernza 种子经销商 ● 种植者销售合同 ● 谷物营销/销售 ● Kernza 政策倡导
(4)尽早与 DT 和 OT 社区合作,采用基于模型的测试和评估(5)利用模型和数字工件来规划和跟踪可靠性和其他程序技术性能指标(6)继续起草提案请求和由此产生的合同,以包含可执行的语言,并确保以适当的基于模型的格式提供可交付成果(7)促进技术交易,以更快地交付能力,从而保持领先于对手
摘要 1 1 引言 1 1.1 背景 1 1.2 问题化 2 1.3 研究问题 2 1.4 目的 3 2 理论框架 3 2.1 沟通理论 3 2.1.1 部门内和部门间沟通 4 2.1.2 沟通质量和频率 4 2.2 技术接受模型 (TAM) 5 2.2.1 基于人工智能的沟通与传统方法 5 2.2.2 人工智能沟通工具的可靠性和可信度 6 2.3 组织学习理论 6 2.3.1 适应新的沟通工具 7 2.3.2 绩效改进 8 2.4 社会学习理论 (SLT) 8 2.4.1 社会因素和人工智能的使用 9 2.4.2 团队互动的有效性 10 2.5 创新扩散 (DOI) 理论 10 2.5.1 推动人工智能在通信领域应用的因素 11 2.5.2 人工智能在通信领域的未来愿景 11 3 方法论 12 3.1 研究设计 13 3.2 预研究 13 3.3 数据收集 13 3.3.1 原始数据 13 3.3.2 原始数据抽样 14 3.3.3 受访者和公司 14 3.3.4 访谈指南 15 3.4 数据分析 16 3.5 质量评估 16 3.6 道德考虑 17 3.7 局限性 17 4 实证研究结果 18 4.1 原始数据 18 4.1.1 部门内和部门间沟通 18 4.1.2 沟通质量和频率 19 4.1.3 基于人工智能的沟通与传统方法 20 4.1.4 人工智能通讯工具的可靠性和可信度 20
另请参阅:可穿戴传感器在 SARS-CoV-2 感染检测中的表现:系统评价,Mitratza 和 Goodale 等人。《柳叶刀数字健康》
13基线年本列表示银行用来为煤炭部门设定其2030年脱碳目标的基线年。目标基础年份不得超过目标设定之前的两个完整报告。银行可以在设定进一步的目标或特殊经济环境的情况下和/或银行自身控制以外的数据质量问题的情况下,如果允许他们在大多数目标中使用相同的基准年和/或基本年度否则将是非典型的,则将长达四年。银行应在这种情况下提供理由。