为了促进从化石到可再生能源的转移,需要存储以应对太阳,风能和波浪功率等技术的间歇性质。一种存储替代方案是基于电池的固定能量存储。有许多电池类型可供选择,但是镍金属氢化物(NIMH)是特别适合的类型。这些电池具有高的能量密度,一个较大的温度操作窗口,是大规模存储的安全替代方案。在本文中,研究了NIMH电池的行为,目的是开发动态电池模型,该模型能够复制电池电压和压力,也用于动态使用。这种模型可用于促进NIMH电池的开发,改进电池管理系统(BMS)中使用的算法,质量控制以及储能系统的尺寸。这些改进可以导致固定的能量存储,并具有更高的效率和更长的可用寿命。为了提高对电池功能的理解,对NIMH电池典型的两种行为进行了更深入的研究,并被认为对电池有很大的影响:开路电压(OCV)磁滞和电池气体相的行为。OCV磁滞会使建模复杂化,因为它会导致电池休息电压在一定程度上取决于到达那里所需的充电/排放路径。OCV磁滞对于所有电池都不明显,对于NIMH电池来说尤其突出。然后将氧气在负电极处重新组合到水中。NIMH电池中的气相是有效的,因为电解质是水性的,并且在操作过程中的电压窗口会导致正电极处的氧气演化。由于对负金属氢化物电极上氢平衡压力的依赖性和氢平衡压力的依赖性,气相中的氢量在周期内有所不同。分别开发了两个模型以研究这些行为。模型显示出良好的定性生殖能力。还使用结构分析方法研究了磁滞现象。在相同的电荷状态下的两个阳性电极材料样品之间的材料结构中发现了差异,但滞后状态不同。这些差异是
电池按用于电极的材料类型进行分类。例如,汽车电池被称为铅电池,因为它们使用铅用于正电极和负电极。大多数家用电池(通常用于遥控器,摄像机和玩具)中的家用电池,使用碱,镍金属氢化物和镍镉。锂离子(锂离子)电池使用锂化合物作为负电极处正极和石墨的材料。锂离子电池可充电,设计可持续很长时间:锂离子电池可以执行500至10,000个循环的充电和放电。取决于充电的频率,电池在几个月之间(例如,由专业人士的工艺工人使用的电动工具)和20多年的时间(例如,存储应用程序)达到了生命的尽头。
在闪烁检测器中,发光材料构成了吸收辐射的活性区域,有多种具有相同特性的闪烁材料,为此,将使用Labr 3闪烁晶体。工作原理是电离辐射与令人兴奋的特定原子水平的材料相互作用,因此,当它去脱落时,会发出特征波长的光脉冲。发出的光量与撞击伽玛射线的能量成正比。用于收集光脉冲,将晶体耦合到光电层流(PMT)或光电二极管,其中光子被转换为电流。如果正确设置了检测器,则PMT阳极处的输出电流提供有关入射伽马射线的能量和时间的信息,因为响应非常快。
锌电极处的树突状生长和形状变化,[4-10]锌 - 空气电池的性能仍然受到正极氧反应的缓慢动力学的限制。[1,11]已大力努力发展催化剂,以降低正极反应的过电势。在这种情况下,双功能催化剂的发展既可以使充电期间的氧气进化反应(OER)和放电期间的氧还原反应(ORR)受到了最近的关注。[1,2,11 - 13]但是,即使在锌 - 空气电池中具有高性能双功能催化剂,其预期的能量效率也接近65%,[14]必不可少的进一步改进,以进一步改进竞争性实施。Balamurugan等。[15]
摘要:CO 2的可再生电驱动电解可能是一种可行的碳中性方法,用于生产基于碳的增值化学物质,例如一氧化碳,甲酸,甲酸,乙烯和乙醇。典型的CO 2电解仪源于高功率要求,这主要是由于能量强度阳极反应。在这项工作中,我们通过在阳极处使用基于Nife的双金属催化剂并施加磁场,从而减少了阳极过电势,从而减少了整体细胞能量消耗。对于CO 2电解过程生产CO,在基于电极的电极流动电解酶中,我们证明,在超过-300 mA/cm 2的CO部分电流密度下,可以使用ANODE和/或使用磁性磁力器的Nife catalyst来实现从7%到64%的功率节省。我们将最大CO部分电流密度达到-565 mA/cm 2,在全细胞能量效率为45%的情况下,将2 M KOH作为电解质。t
光生电荷产生范围很宽且可调,[4] 而且载流子迁移率高,扩散长度可达几微米。[5–7] 在任何光收集装置中,合适的接触对于有效收集光生电荷并将其输送到外部电路都至关重要。接触负责提供内在不对称性,以产生提取光生载流子的驱动力;[8] 这种内在不对称性可以通过动力学选择性(扩散控制)或电极之间的能量失配(漂移控制)来建立。一般的薄膜太阳能电池由活性层、夹在空穴提取阳极接触和电子提取阴极接触之间组成。在光照下,活性层内产生的电荷载流子将漂移扩散到接触处,并通过内在不对称性被提取,从而产生净光电流。有机太阳能电池的特点是载流子迁移率低、扩散长度短,因此需要在活性层上建立强大的内建电场以提高电荷提取率并避免复合。[9–11] 该电场由内建电位V bi (或接触电位) 引起,该电位源于阳极和阴极之间的功函数差异,由于有机半导体的介电常数相对较低,因此基本上不受屏蔽。相反,在钙钛矿太阳能电池中,载流子扩散长度为几微米,在没有电场的情况下,光生电荷应该能够毫不费力地穿过 200–500 纳米的活性层而不会复合。因此,只要能确保接触处的动力学选择性[12],电荷收集预计将由扩散控制[8,13],人们正在沿着这个思路达成共识。通过在电极和活性层之间采用单独的电荷传输层 (CTL) 来实现动力学选择性,从而形成 n–i–p 或 p–i–n 型器件架构,其中阳极处为空穴传输层 (HTL,p 层),阴极处为电子传输层 (ETL,n 层)。在理想情况下,这些层能够传导多数载流子,同时防止少数载流子的提取,从而为扩散驱动的电荷收集创建优先方向。在这种电荷提取要求的框架内,对于内置电位的确切作用以及负责电荷提取的驱动力的确切性质仍然存在一些猜测。
随着对环境保护和能源需求不断增长的需求的越来越多,对可持续储能设备的研究变得越来越紧迫。1 - 4个锂离子电池已经迅速发展,但是有毒和易透明电池极为危险,因此近年来,无毒和安全的水性锌电池引起了很多关注。5 - 8个锌金属在水溶液中相对稳定,因此可以直接用作水性电池(AZB)的阳极电极。实际上,Zn金属电极具有许多优势,包括:9 - 11(1)高丰度和低价,(2)化学稳定性,(3)高理论能力(820 mA H G -1,5855 mA H CM -2)和(4)低氧化还原电位(-0.76 Vs vs. vs.sha)。在AZBS中,Zn 2+离子在AZB充电/放电期间在阳极电极处镀金/剥离,而树突和侧反应危害了电池的寿命和库仑的效率。12 - 14因此,Zn阳极的改进对于AZBS至关重要。
潮汐能或潮汐能是水力发电的一种形式,它将从潮汐中获得的能量转化为有用的能量形式,主要是电能。利用潮汐能的拦河坝方法包括在受潮汐流影响的海湾或河流上建造拦河坝。安装在拦河坝墙上的涡轮机在水流入和流出河口盆地、海湾或河流时产生电力。波浪能(或波浪能)是通过海洋表面波浪传输和捕获能量。捕获的能量随后用于各种有用的工作,包括发电、海水淡化和抽水。海洋热能转换 (OTEC) 是一种利用深冷海水和温暖的热带地表水之间的温差发电的过程。燃料电池的工作原理是让氢气通过燃料电池的阳极,让氧气通过阴极。在阳极处,氢分子分裂成电子和质子。混合能源系统或混合动力通常由两种或多种可再生能源组成,这些可再生能源一起使用以提高系统效率以及实现更大的能源供应平衡。潮汐能:来自潮汐的能量
2.2 单端 LNA 设计(共源共栅电感源极衰减) 图 1 显示了一个单端 LNA,该电路结构利用连接到源极处的晶体管 M 1 的电感 (LS )(电感源极衰减)[4]。这种结构的优点是设计人员可以通过选择适当的电感来灵活地控制输入阻抗实部的值。此外,为了减少调谐输出和调谐输入之间的相互作用,使用了级联晶体管 M 2 。偏置电路由形成电流镜的晶体管 M 1 和 M 3 实现。选择 M 3 以获得偏置电路的最小功率开销。使用电感 L d 的原因是为了与输出负载产生谐振以获得最大的输出功率传输。此外,通过设计更宽的 W 2 来权衡共源增益和增加第 2 个晶体管 (M 2 ) 的寄生电容。此外,晶体管 M 2 有助于降低米勒效应 (C gd1 ) 以及 S 21 [4]。等效电流
使用非有机电解质的水锌离子电池(Azibs),主要是由于其低成本,环境友好性和内在安全性引起了持续的兴趣。然而,锌离子电池遇到了一系列严重的挑战,包括在阳极处的氢进化作用(她),表面钝化,树突形成以及有限的工作电压和相对较低的能量密度。这些因素均受到电解质中H的浓度的影响(即pH)及其在循环过程中的波动。迄今为止,仍然缺乏对电解质的pH值与Azibs所面临的挑战之间相关性的系统评估,对pH的重点审查如何影响Azibs的电化学性能,或者对可用于提高细胞效率的策略的任何集中讨论。在这篇综述中,我们强调了电解质pH和Azibs挑战之间的牢固相关性,并详细介绍了近年来与电解质添加剂,分离器修饰,界面保护层和电池系统设计有关的研究进度,并特别关注与pH控制相关的调节机制。在此基础上,我们建议未来的研究重点,并为阿齐布斯的前进发展提出建议。