在过去的几十年中,生态损害一直是人类的最大威胁。绿色技术创新,环境政策和可再生能源消耗等因素可能在实现生态可持续性的过程中起着至关重要的作用。因此,本研究旨在调查绿色技术创新,环境政策和可再生能源消耗的影响,以及经济增长,贸易开放性和城市化对环境可持续性在现成的Kuznets曲线曲线假设的存在下,从1994年到2018年。为此,我们采用了长期的平均估计方法(FMOL,DOLS,FE-OLS)以及小组分数回归技术,以在各种生态足迹水平上产生异质结果。小组分数回归发现报告报告说,绿色技术创新,环境政策,可再生能源消耗和城市化,通过减少所有分位数来促进生态可持续性。然而,可再生能源消耗对生态可持续性的影响在第10个分位数上在统计学上微不足道。此外,经济增长和经济增长广场对生态足迹的负面影响的重大积极影响证实了环境的库兹尼特曲线假设。此外,研究结果表明,贸易开放性刺激了生态足迹,因此降低了生态可持续性。此外,长期平均估计值的发现类似于小组的分位数回归结果。本研究的发现表明,与不可再生和通过经济援助中的G-7促进绿色技术创新相比,强调和帮助这些国家 /地区需要精心设计的严格政策,并通过经济援助和严格的环境政策政策工具(例如,税收)确保这些国家可持续可持续性。
化学疗法的系统性会导致广泛影响患者生活质量的广泛副作用。这项研究提出了一个新型框架,将卷积神经网络(CNN)与精确的伽马射线递送系统相结合,以选择性地靶向恶性细胞,从而最大程度地减少对健康组织的附带损害。在12,000个注释的成像数据集上对基于RESNET-50的CNN进行了培训,并与用于实时靶向的机器人辐射系统集成在一起。对合成组织模型的实验验证表明,健康组织损伤降低了92%,报告的副作用降低了78%。统计分析确认模型灵敏度(97.2%),特异性(94.8%)和提高的治疗精度。这项研究为推进个性化肿瘤学并减少化学疗法的身体和情感损失奠定了基础。
基于碳的超级电容器的能量存储能力取决于电解质离子的吸附或电极和电解质界面上可逆的氧化还原反应的吸附。碳材料中的大量微孔(直径少于2 nm)被认为对于通过提供丰富的可访问的表面积和活性位点而对增加能量密度至关重要。然而,电解质离子不能有效地转运到微孔中的内部孔中,从而导致电极材料的下功率性能。通常认为,中孔(2 - 50 nm),尤其是狭窄的中孔可以提供短的电子和离子传输途径,从而增强了微孔的利用率。13,14此外,大孔(> 50 nm)还可以作为快速的储层,以存储更多的电解质离子。因此,具有丰富合适微孔的孔结构的合理设计,碳材料的宏观和中孔具有很大的显着性cance cance cance cans cans cans and cants and cants cans的能力和速率能力。将杂原子引入碳网络是获得出色电化学
聚合物基质中纳入的铅卤化物钙钛矿纳米晶体(LHP-NC)已成为各种光子应用的有前途的材料。然而,由于单体转化率低,LHP-NCS负载限制以及在连接后保持NCS完整性方面,挑战持续到实现高质量的纳米复合材料,并限制了NCS完整性。通过NC引发的光诱导的电子传递 - 可逆的加法链转移(PET-RAFT)方法合成单个步骤中合成LHP-NCS/聚(甲基丙烯酸甲酯)纳米复合材料的新颖方案。poly-Merization启动由NCS表面介导的蓝光下介导的均可制造具有NCS载荷的同质纳米复合材料,即使在氧气的情况下,NCS载荷也可达高达7%w/w和≈90%的单体转换。此过程保留了NCS的光学质量并钝化了NCS表面缺陷,从而导致纳米复合材料表现出接近统一发光效果。通过放射性发光测量值表明,这种方法对产生高负载的纳米复合材料进行辐射检测的潜力验证了6000 pH MeV-1的光屈服值和效率寿命为490 PS的快速闪烁动态,显示了时间射频射频的前景。
HVDC Light ® Valve Hall 堪培拉/苏黎世,2024 年 5 月 23 日——日立能源已被 Marinus Link Pty Ltd (MLPL) 选中,为具有全国意义的高压直流 (HVDC) 项目提供电力,该项目将增强澳大利亚大陆与塔斯马尼亚电网之间的连接。约 345 公里长的电缆路线 HVDC 系统将使维多利亚州和塔斯马尼亚州之间的可再生能源双向流动。Marinus Link 首次在澳大利亚使用先进的转换器技术在链路的两端稳定和整合越来越多的可再生能源到电网中。该连接将使塔斯马尼亚州能够进口维多利亚州生产的过剩太阳能和风能,同时保留其水力发电并储存多余的能源。清洁水电可以在最需要的时候为大陆电网供电,充当国家的大电池。此外,它还加强了澳大利亚电网的供电安全性,该电网的电力越来越多地来自可持续能源。日立能源将为其 HVDC Light® 电压源换流器 (VSC) 站供电
嵌段共聚物“呼吸图”模板中的定向自组装,然后进行软水解-缩合:迈向合成仿生二氧化硅硅藻外骨骼的一步 Antoine Aynard, a,b Laurence Pessoni, a,b Laurent Billon a,b * a Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 64000, PAU, France b 仿生材料组:功能与自组装,E2S UPPA, Helioparc, 2 avenue Angot, 64053, PAU, France。 *通讯作者。电子邮件地址:laurent.billon@univ-pau.fr 关键词:自组装、呼吸图、自下而上的过程、溶胶-凝胶、仿生材料摘要
神经外科医生面临的挑战是只有一个谬误的空间,就可以进行复杂的程序。教育资源受时间和财务限制的影响。最近的生物技术进展影响了外科医生的计算机关系。1尸体和动物实验室对学习有很大帮助,但有许多实际的局限性。对于居民的手术技能的发展,无论是以观察的形式还是手术剧院内的动手训练,培训都是重要的。我们的大脑有狭窄的走廊可以在外科医生中敏捷。因此,它需要一个非常容易的神经外科医生,不仅知道他的工具,而且还知道大脑的复杂解剖结构。2在本研究中,我们使用空间分布分析来研究手工体工程学对指标的影响,例如任务持续时间,施加过多的力量,尝试数量以及给定任务的完成程度。 神经外科Jinnah医院拉合尔通过添加虚拟现实模拟器来更新研究生培训计划。 我们旨在探讨虚拟现实的当前和未来角色以及在神经外科培训中的模拟,以减少学习曲线,改善概念理解并增强视觉空间技能。2在本研究中,我们使用空间分布分析来研究手工体工程学对指标的影响,例如任务持续时间,施加过多的力量,尝试数量以及给定任务的完成程度。神经外科Jinnah医院拉合尔通过添加虚拟现实模拟器来更新研究生培训计划。我们旨在探讨虚拟现实的当前和未来角色以及在神经外科培训中的模拟,以减少学习曲线,改善概念理解并增强视觉空间技能。
摘要:异种抗原引起过度急性排斥并限制了种间异种移植的成功。因此,参与异种抗原生物合成的基因,例如GGTA1,CMAH和B4GALNT2,是改善异种移植结果的关键靶标。在这项研究中,我们引入了一种CRISPR/CAS9系统,同时使用电穿孔来靶向GGTA1,CMAH和B4GALNT2,以一步一代生成多个基因编辑的猪而没有异种抗原。首先,我们优化了针对GGTA1和CMAH的引导RNA(GRNA)相对于基因编辑的效率,并将电穿孔的胚胎与优化的GRNA和CAS9转移到受体Gilts中。接下来,当GGTA1,CMAH和B4GALNT2同时靶向GGTA1,CMAH和B4GALNT2时,我们优化了CAS9蛋白的浓度,并使用优化的条件同时靶向基因。我们实现了GGTA1 / CMAH双重编辑的猪和GGTA1 / CMAH / B4GALNT2三重编辑的猪的一步生成。免疫组织学分析表明异种抗原的下调。然而,这些多个基因编辑的猪是遗传镶嵌物,未能敲除一些异种抗原。尽管应解决镶嵌性,但电穿孔技术可能会成为旨在改善猪至人类异种移植的猪中一步生成多个基因修饰的主要方法。
纳米结构的电化学生物传感器已经迎来了诊断精度的新时代,从而增强了临床生物标志物检测的敏感性和特异性。中,电容性生物传感可实现多个分子靶标的超灵敏标签检测。但是,与纳米结构平台的常规制造方法相关的复杂性和成本阻碍了这些设备的广泛采用。这项研究引入了一个电容式生物传感器,该生物传感器利用激光磨碎的还原氧化石墨烯(RGO)ELEC TRODE,该Elec Trodes装饰有金纳米颗粒(Aunps)。制造涉及激光标记的GO-AU 3 +膜,产生RGO-AUNP电极,通过按压戳面方法无缝传输到PET基板上。这些电极与特定生物受体功能化后,对生物分子识别具有显着的亲和力。例如,使用人IgG抗体的初步研究证实了使用电化学电容光谱学的生物传感器的检测能力。此外,生物传感器可以量化临床癌症生物标志物Ca-19-9糖蛋白。生物传感器的动态范围在0到300 u ml -1,检测极限为8.9 u ml -1。对人体液体预处理的CA-19-9抗原的已知浓度进行严格测试证实了它们在检测糖蛋白方面的准确性和可靠性。这项研究表示临床生物标志物的电容式生物传感方面的显着进展,可能导致更容易获得和成本效益的护理解决方案。
Sylvain Leblond,Pascal Fichet,LaumonierRémi,Sophie Billon,Paul Sardini等。开发用于拆卸应用的紧凑型Alpha和Beta摄像头。放射分析和核化学杂志,2022,331,pp.1075-1089。10.1007/S10967-021-08172-2。CEA-03939255