摘要 - 虽然粒子中的方法(PIC)方法是相当的,但对新开发的方法和单个代码的验证和验证主要集中在一些测试案例的特殊选择上。这些测试用例中的许多涉及一维模拟。这是由于(准)分析解决方案的可用性或历史原因。ad的测试通常集中于对特定物理问题(例如粒子排放或碰撞)的研究,并且不一定研究完整特色的PIC代码所需的算法套件的综合影响。由于三维(3D)代码成为标准,因此缺乏基准测试可以确定这些代码的有效性;现有论文要么不研究数值实验的细节,要么提供其他可测量的数字指标(例如噪声),这些指标是模拟的结果。本文旨在提供几种测试用例,可用于验证和基准在3D中的细胞代码中粒子标记。我们专注于无碰撞的示例,并且可以以合理的计算能力运行。四个测试案例以显着的细节呈现;其中包括基本的粒子运动,束扩展,血浆的绝热膨胀和两个流不稳定性。所有提出的案例均可根据现有的分析数据或其他代码进行比较。我们预计这些情况应该有助于解决基准标记和验证问题的空隙,并有助于在细胞代码中开发新粒子。
在偏远岛屿或孤立地区等未联网地区,大规模整合太阳能可再生能源是一项挑战。事实上,这些地区的电网无法依赖大型电网的支持,更容易受到太阳能资源固有波动性和电网故障(如生产单元或输电线路突然故障)的影响。欧盟委员会资助的 TwInSolar 项目旨在提供支持和解决方案,以克服未接入大陆电网的岛屿地区面临的问题。作为该项目的一部分,向科学界介绍了四个研究案例,每个案例都强调了在留尼汪岛不同规模上观察到的具体问题。本文旨在详细描述四个选定的系统、相应的挑战以及可用的数据。
在偏远岛屿或孤立地区等未联网地区,大规模整合太阳能可再生能源是一项挑战。事实上,这些地区的电网无法依赖大型电网的支持,更容易受到太阳能资源固有波动性和电网故障(如生产单元或输电线路突然故障)的影响。欧盟委员会资助的 TwInSolar 项目旨在提供支持和解决方案,以克服未接入大陆电网的岛屿地区面临的问题。作为该项目的一部分,向科学界介绍了四个研究案例,每个案例都强调了在留尼汪岛不同规模上观察到的具体问题。本文旨在详细描述四个选定的系统、相应的挑战以及可用的数据。
复杂的机器学习模型有望通过帮助医生根据分子特征选择最佳的抗癌药物组合来彻底改变急性髓系白血病 (AML) 等疾病的治疗。虽然准确的预测很重要,但了解抗癌药物协同作用的潜在分子基础也同样重要。可解释的人工智能 (XAI) 为数据驱动的癌症药理学提供了一种有前途的新途径,将高度准确的模型与可解释的模型决策见解相结合。然而,由于癌症转录组数据具有高度相关性和高维性,我们发现现有的 XAI 方法在应用于大型转录组数据集时并不理想。我们展示了一种基于模型集成的新方法如何帮助提高解释的质量。然后,我们使用我们的方法来证明造血分化特征是各种抗 AML 药物组合协同作用的基础。
DNA 复制是细胞分裂和增殖的核心,涉及数百种蛋白质之间紧密协调的功能(1、2)。尽管复制机制非常精确,但它面临着来自内在和外在因素的挑战(3)。这些挑战可能导致复制叉停滞、DNA 断裂、复制精度降低以及其他统称为 RS 的因素(4)。因此,细胞进化出了一种强大的 RS 反应,可激活 DNA 损伤修复信号或诱导细胞死亡,以维持细胞群内的基因组完整性(5-9)。由于持续的增殖信号和/或 DNA 修复缺陷,癌细胞会经历持续的复制压力(10、11),使其强烈依赖 RS 反应。这种依赖性的结果是复制压力成为癌症治疗中可利用的治疗弱点(12、13)。许多癌症疗法利用复制压力来消除癌细胞,使用多种 RSi 机制(补充图 S1)。经典化疗药物通过直接影响 DNA 完整性来诱发 RS。
摘要 — 目标:用脑电图 (EEG) 测量的稳态视觉诱发电位 (SSVEP) 在脑机接口 (BCI) 拼写器中产生不错的信息传输速率 (ITR)。然而,目前文献中高性能的 SSVEP BCI 拼写器需要对每个新用户进行初始冗长而累人的用户特定训练以适应系统,包括使用 EEG 实验收集数据、算法训练和校准(所有这些都在实际使用系统之前)。这阻碍了 BCI 的广泛使用。为了确保实用性,我们提出了一种基于深度神经网络 (DNN) 集合的全新目标识别方法,该方法不需要任何类型的用户特定训练。方法:我们利用先前进行的 EEG 实验的参与者的现有文献数据集,首先训练一个全局目标识别器 DNN,然后针对每个参与者进行微调。我们将这组经过微调的 DNN 集合转移到新的用户实例,根据参与者与新用户的统计相似性确定 k 个最具代表性的 DNN,并通过集合预测的加权组合来预测目标字符。结果:在两个大规模基准和 BETA 数据集上,我们的方法实现了令人印象深刻的 155.51 比特/分钟和 114.64 比特/分钟 ITR。代码可用于重现性:https://github.com/osmanberke/Ensemble-of-DNNs 结论:在两个数据集上,对于所有刺激持续时间在 [0.2-1.0] 秒内的情况,所提出的方法都明显优于所有最先进的替代方案。意义:我们的 Ensemble-DNN 方法有可能促进 BCI 拼写器在日常生活中的实际广泛部署,因为我们提供最高性能,同时允许立即使用系统而无需任何用户特定的训练。索引词 — 脑机接口、BCI、EEG、SSVEP、集成、深度学习、迁移学习
摘要 自身免疫性疾病是一类以免疫介导攻击人体自身组织和器官为特征的多样化疾病。本综述全面概述了自身免疫性疾病,包括其定义、分类、流行病学、病因、发病机制、临床表现、当前治疗方法和未来研究方向。自身免疫性疾病可分为器官特异性(例如 1 型糖尿病、桥本甲状腺炎)和系统性(例如系统性红斑狼疮、类风湿性关节炎)疾病,每种疾病都有不同的临床表现和潜在机制。遗传易感性、环境触发因素和免疫失调在疾病发展中起着关键作用。常见症状包括疲劳、关节痛、皮肤表现和器官特异性功能障碍,导致严重发病率和生活质量下降。目前的治疗策略包括免疫抑制疗法、疾病改良药物和针对特定免疫途径的新兴生物制剂。基因组学、免疫学和精准医学的进步为个性化诊断和治疗优化提供了有希望的途径。未来的研究方向包括进一步阐明疾病异质性、识别新的生物标志物以及开发有针对性的免疫疗法以实现长期缓解并改善患者预后。了解遗传、环境和免疫因素的复杂相互作用对于推进治疗方法和减轻全球自身免疫性疾病负担至关重要。加强跨学科合作和持续投入研究对于将这些见解转化为临床实践并造福全球患者至关重要。引用此文章。Albarbar B, Aga H. 自身免疫性疾病综述:最新进展和未来展望。Alq J Med App Sci。2024;7(3):718-726。https://doi.org/10.54361/ajmas.247337 引言 在过去的一个世纪里,自身免疫性疾病的研究有了很大的发展。自身免疫性疾病的概念开始形成于 19 世纪末和 20 世纪初,当时人们对类风湿性关节炎和系统性红斑狼疮 (SLE) 等疾病进行了观察,这些疾病被怀疑是免疫系统在攻击人体自身组织。20 世纪中叶,诸如在狼疮患者中发现抗核抗体 (ANA) 等里程碑式的发现为了解某些疾病的自身免疫性质提供了关键见解。这一时期还出现了检测这些抗体的诊断测试 [1,2] 。20 世纪下半叶,免疫学技术迅速发展
关于药物灭菌的文献有限。本研究旨在评估二氧化氮 (NO 2 ) 灭菌这一新兴技术对五种不同眼科活性药物成分(即盐酸四环素、阿昔洛韦、地塞米松、甲基泼尼松龙和曲安西龙)的效果。测试的 NO 2 过程浓度为 5、10 和 20 mg/L。应用温度为 21 ◦ C,相对湿度为 30 %。过程周期由两个脉冲组成,每个脉冲停留时间为 10 分钟。未处理样品作为空白。通过高效液相色谱联用紫外/可见光检测器评估灭菌方法的效果,用于定量分析降解产物和评估的眼科药物的相对含量。对于盐酸四环素和阿昔洛韦,随着 NO 2 浓度的增加,杂质含量有所增加。考虑到杂质必须符合欧洲药典 (Ph. Eur.) 规定的限度要求,估计最大允许 NO 2 浓度分别为 10 mg/L 和 2.5 mg/L。对于这两种化合物,经 20 mg/L NO 2 处理的样品与未处理样品相比,含量有显著差异。对于甲基强的松龙、地塞米松和曲安西龙,杂质符合 Ph. Eur. 对每种 NO 2 浓度的限度要求,相对含量没有显著影响。由于会导致严重降解,不建议用 NO 2 对盐酸四环素和阿昔洛韦进行灭菌。甲基强的松龙、地塞米松和曲安西龙的 NO 2 灭菌可应用于相关药品的无菌处理程序中。
目前,我们尚无完善的理论来解释当人类思维表征一个社会群体时,它所表征的是什么。更糟糕的是,许多人认为我们知道。这种错误观念是由当前情况造成的:到目前为止,研究人员一直依靠自己的直觉将社会群体概念与特定研究或模型的结果联系起来。这种对直觉的依赖虽然有必要,但却付出了相当大的代价。冷静来看,现有的社会群体理论要么是 (i) 字面意义上的,但远远不够(比如建立在经济博弈之上的模型),要么是 (ii) 仅仅是隐喻性的(通常是包含或包含隐喻)。直觉填补了明确理论的空白。本文提出了一种计算理论,解释冲突背景下的群体表征的字面含义:它是将代理分配给少数三元交互类型中的特定角色。这种群体的“心理定义”为社会群体的计算理论铺平了道路——因为它提供了一种理论,说明表示和推理群体的信息处理问题究竟是什么。对于心理学家来说,本文提供了一种概念化和研究群体的不同方法,并表明非同义反复的社会群体定义是可能的。对于认知科学家来说,本文提供了一个计算基准,可以以此为标准衡量自然智能和人工智能。
摘要 目的 构建和验证一组含有六种不同标记的解脂耶氏酵母 CRISPR/Cas9 载体,可编辑几乎任何遗传背景,包括野生型菌株的遗传背景。 结果 使用 Golden Gate 方法,我们组装了一组六个 CRISPR/Cas9 载体,每个载体含有不同的选择标记,用于编辑工业酵母解脂耶氏酵母的基因组。此载体组可通过 Addgene 获得。使用 Golden Gate 组装,可以轻松快速地将任何向导 RNA (gRNA) 序列引入这些载体中的任何一个。使用这六个载体中的五种,我们成功地编辑了各种遗传背景(包括野生型菌株)中的六种不同基因。使用这些载体大大改善了特定位点的同源重组和盒式整合。结论我们已经创建了一套多功能、模块化的 CRISPR/Cas9 载体,可以快速编辑任何解脂耶氏酵母菌株;该工具将