a b s t r a c t在他的1856年亚当斯奖(Adams Prive)文章中,詹姆斯·克拉克·麦克斯韦(James Clark Maxwell)证明了土星的戒指不能由统一的僵硬的身体组成。这是环和行星之间两体重力相互作用导致不稳定的结果。同样,也已经知道,由于牛顿的外壳定理,所谓的戴森球将不稳定。在这里报告了一个令人惊讶的发现,在受限的三体问题中,环和球体(壳)都可以稳定。首先,如果在轨道上考虑了两个主要的质量,则在其公共质量中心,一个较大的,均匀的有限环,封闭质量较小的质量的质量原则在某些条件下可以稳定。同样,如果球体在某些条件下再次包围了两个主要质量的较小质量,则dyson球可以稳定。这些发现将麦克斯韦的结果扩展到环的动力学上,并在所谓的ringworlds和dyson球体上具有有趣的轴承。此外,存在这种大规模结构的被动稳定轨道的存在可能对所谓的技术签名有影响,以寻求事质外智能研究。
当应用于地月轨道模式时,利用经典的地面和/或太空传感器在近地空间执行空间领域感知 (SDA) 变得越来越困难。因此,地月周期轨道被提出作为填补这一能力空白的一种手段。虽然周期轨道有许多用途,但这项工作评估了各种地月周期轨道在样本 SDA 任务架构中的有效性。具体而言,对地月空间内几种不同类型的周期轨道进行了建模,以评估它们在跟踪/监视围绕 L1 拉格朗日点的 Lyapunov 轨道上均匀分布的两颗假想卫星方面的各自有效性。所分析的轨道是在圆形限制三体问题 (CR3BP) 中建模的。还介绍了在过渡到双圆限制四体问题 (BCR4BP) 时保持相同轨迹所需的推进剂。为了比较从 CR3BP 过渡到 BCR4BP 等更高保真度模型时的轨道维护成本,我们寻求实施多种动力学模型。概念性空间对空间传感器用于确定 SDA 任务周期轨道几何的限制,该限制与范围、能力和太阳/地球/月球排斥角有关。视觉星等用于确定目标是否可见。结果列表与地月 SDA 最有效周期轨道的建议一起呈现。
上午 8:00 AAS-190:针对哈密顿积分不变行为的控制来操纵航天器相空间分布 Oliver Boodram(科罗拉多大学博尔德分校)、Daniel Scheeres(科罗拉多大学博尔德分校) 上午 8:20 AAS-232:包括非哈密顿太阳辐射压力的圆形限制三体问题的近似解析解 Hailee Hettrick(麻省理工学院)、David Miller(麻省理工学院)、Begum Cannataro(德雷珀) 上午 8:40 AAS-288:将弹道捕获与地球-月球系统中的周期性轨道联系起来的双脉冲转移 Lorenzo Anoè(奥克兰大学 - 奥克兰空间研究所)、Thomas Caleb(ISAE-SUPAERO)、Roberto Armellin(奥克兰大学)、 Alicia Martínez-Cacho (马德里理工大学)、Claudio Bombardelli (马德里理工大学 (UPM))、Stéphanie Lizy-Destrez (ISAE- SUPAERO) 上午 9:00 AAS-120:空间任务设计中的辛方法 Agustin Moreno (IAS)、Urs Frauenfelder (奥格斯堡大学)、Dayung Koh (JPL)、Cengiz Aydin (纳沙泰尔大学) 上午 9:20 AAS-300:双圆受限四体问题中周期轨道的稳定性图 Juan Ojeda Romero (约翰霍普金斯大学应用物理实验室)、Wayne Schlei (JHUAPL) 上午 9:40 AAS-176:地月低推力增强优化低能量转移 Yuji Takubo(佐治亚理工学院)技术 / 斯坦福大学)、Yuri Shimane(佐治亚理工学院)、Koki Ho(佐治亚理工学院) 上午 10:00 上午休息
量子信息科学正处于变革的十字路口,即将彻底改变计算、密码学、通信、网络、计量、传感和成像等多个领域。在各种量子系统中,光子量子比特和中性原子是这场量子革命的关键催化剂。本演讲探讨了这些平台的协同融合,重点是通过相干原子集合中的自发四波混频 (SFWM) 开创窄带纠缠双光子源 [1,2]。值得注意的是,我们最近取得了一项独特的成就,首次通过热原子蒸汽中的自发六波混频 (SSWM) 创建了可靠的真正 W 级三光子源 [3],其产生速率达到了前所未有的水平。重要的是,这一突破无意中揭示了与几个世纪以来数学和天体力学中著名的三体问题的深刻联系。我们的旅程从基础量子概念开始,调查替代量子比特平台,并深入研究传统的双光子生成方法,如自发参数下转换 (SPDC) 和固体材料中的 SFWM。我们揭示了我们在相干原子内窄带双光子和三光子生成方面的最新突破,有望实现长距离量子信息处理和网络。单光子具有不可动摇的量子特性,可作为多功能信息载体,而中性原子则为培育长寿命量子比特和量子存储器提供了理想的环境。我们揭开了中性原子纠缠生成背后的复杂机制的神秘面纱,揭示了 SFWM 和 SSWM 原理。演讲最后展示了我们的最新进展,强调了我们在窄带纠缠光子中产生无与伦比的相干性和可调谐性的能力。这些属性推动了可扩展量子网络的发展,连接了量子处理器并实现了安全的全球信息交换。当我们踏上这段启迪之旅时,我们阐明了单光子和中性原子在推进量子信息科学和技术中的关键作用,激发了迈向量子未来的新研究途径。
I. 引言随着火星立方体一号 (MarCO) 任务的成功和小型化技术的进步,小型卫星不再局限于在低地球轨道 (LEO) 运行。相反,通过低推力小型卫星进行深空探索、技术演示和有针对性的科学任务可能很快就会成为现实。事实上,即将到来的任务,如月球冰立方、LunaH-map 和 NEA Scout,将把小型卫星作为次要有效载荷搭载在 Artemis 1 上,部署到多体重力环境内的各种位置[1-3]。然而,混沌多体系统中航天器的轨迹和机动设计本质上是一个高维问题,而且由于结合了与低推力小型卫星相关的约束而变得更加复杂:有限的推进能力、运行调度约束以及固定但不确定的初始条件。虽然存在多种基于最优控制和动态系统理论 (DST) 的数值方法,用于在多体系统的近似动力学模型中构建低推力轨迹和机动剖面,但自主和稳健设计策略的开发需要一种替代方法。强化学习 (RL) 是天体动力学界越来越感兴趣的一类用于实现轨迹和机动设计的自主性的算法。RL 算法通常涉及代理与环境交互,通过对动态状态采取行动来最大化奖励函数。代理会探索环境,直到确定了决定每个状态下最佳动作的策略。如果制定得当,这些算法可以探索许多状态-动作对以确定最佳动作,同时限制对次优动作的探索。RL 方法已用于天体动力学中各种应用和动力学模型的轨迹和机动设计。例如,Dachwald 探索使用人工神经网络和进化算法设计配备低推力航天器到水星的转移 [ 4 ]。Das-Stuart、Howell 和 Folta 近期提出的方法利用 RL 和基本动力学结构来设计圆形限制三体问题 (CR3BP) 中周期轨道之间的复杂转移轨迹 [ 5 ]。此外,Scorsoglio、Furfaro、Linares 和 Massari 还使用演员-评论家深度强化学习 (DRL) 方法来开发地月空间近直线轨道航天器的对接机动 [ 6 ]。最近,Miller 和 Linares 应用著名的近端策略优化 (PPO) 算法来设计地月系统中遥远逆行轨道之间的转移,通过 CR3BP 进行建模 [ 7 ]。这些研究的成功为天体动力学界继续探索和扩展 RL 在多体轨迹设计策略中的应用奠定了宝贵的基础。具体来说,本文以这些先前的研究为基础,重点关注实施基于 RL 的轨迹设计方法的一个重要组成部分:制定一个奖励函数,该函数既反映了设计目标,也反映了影响恢复机动轮廓操作可行性的约束。该分析是在低推力 SmallSat 的轨迹设计背景下进行的,以快速访问位于与 CR3BP 中的周期轨道相关的稳定流形上的附近参考轨迹。