摘要 — 本文提出了一种用于多频带带通滤波器 (MBPF) 的相似变换方法,将星型拓扑转换为直列拓扑。介绍了一种通用理论技术,用耦合矩阵的相似变换旋转代替传统的通过滤波器综合逐步提取 LC 电路,解决了参数提取过程中的舍入误差,提高了理论综合结果的准确性。直列拓扑的应用大大提高了滤波器设计的灵活性,降低了电路复杂性,简化了高阶 MBPF 的制造。基于基片集成波导 (SIW) 技术,设计和实现了一系列示例,包括三频、四频,特别是首次报道的五频三阶切比雪夫 SIW 带通滤波器。模拟响应与测量结果之间具有良好的一致性,验证了设计的滤波器模型和提出的理论方法。
● 本论文基于A等人[A 20a]的研究成果投稿。 ● 本文是在A等人的研究成果[A 20a]的基础上进行了修改,并增加了实验。 ● 本文总结了A等人的两项研究成果[A 20a, A 20b]。 请注意,即使某篇论文在本学会看来不构成重复提交,但在其他学术学会看来也可能被视为重复提交。 2.6 作者所有积极参与论文写作过程(包括研究计划的构思和规划、实验的执行和讨论)并对所提交论文的内容负责的个人都必须列在作者名单中。所有相关人员应就作者名单及其列出顺序达成一致。一般来说,论文提交给学会后,作者名单就不能更改。然而,如果必须添加新作者来处理查询,则不适用。 3.稿件格式及写作风格请按照以下规定撰写论文稿件。如有任何疑问,请通过电子邮件(editor@ai-gakkai.or.jp)联系协会秘书处。 3.1 样式文件的使用 请使用期刊的样式文件撰写论文稿。您可从以下协会网站获取样式文件。 “期刊样式文件”https://www.ai-gakkai.or.jp/published_books/transactions_of_jsai/toukou/ 一般而言,稿件应使用 LaTeX 系统准备。如果您使用期刊样式文件创建它,则可以使用将在期刊中发布的打印图像来创建它。 LaTeX系统采用日文版pLaTeX作为标准。作者有责任调整由于 LaTeX 系统差异而导致的打印图像的差异。如果您无法使用 LaTeX 系统,也可以使用 Microsoft Word 格式的样式文件。 3.2 稿件结构 请按照样式文件和下图所示的结构撰写稿件。 标题 请按照样式文件在稿件第一页开头写上以下内容。
关于2022年度适用于政府大楼修缮工程的市场单价,为减少“2022年3月起适用的公共工程设计劳务单价”中的特例措施及加班时间,考虑到必要费用已反映在单价中,《政府维修工程适用市场单价(2022年度单价)试行(国建工字第13号,2022年3月28日)》本文件内容现已部分修订,已修改,如附件所示。
1. 有效使用适合问题的现有技术 2. 现有技术的有用组合 3. 开发有用的工具 4. 开发有趣的应用程序 5. 有效实施现有技术 6. 分析人工智能系统可以有效工作的环境 7. 评估商业价值和开发成本,包括技术内容 8. 系统化人工智能系统开发和运行的专有技术 传统的论文同行评审标准要求根据定量的实验结果对新颖性、有用性和可靠性进行客观评价,但在实际的人工智能系统中通常很难提供这一点。因此,我们的同行评审政策是,如果文章包含成员可以应用于其他案例的论点,被认为对于学会授权有意义,存在无法呈现完全客观的评估结果的正当理由,并且从提议的系统中获得的行动和效果以逻辑一致的方式进行断言,那么即使是定性评估也会接受。 ③ 原创论文(概念论文) 一个学术领域一旦建立并成熟到一定程度,就需要高度完成的论文,其中包括严格的公式化和通过可靠的评估实验来验证其实用性。这虽然可以看作是学术研究发展的自然趋势,但也可以说,这与人工智能研究本身的前沿性相悖。开创了人工智能研究领域的前沿研究不能用上述成熟领域论文的标准来评判。 例如明斯基关于框架理论的论文、一般框架问题、RoboCup的提案等很多研究项目都为学术和技术的进步做出了重大贡献,但可以说在它们发表的时候,很难用成熟领域的标准来评价它们。此外,这些研究项目提出的理念或方法,或提出的课题,即使提出时验证不充分,也算是“有意义的提案”。虽然这些项目投入了大量精力,但要看到其作用还需要时间。 概念论文类别旨在鼓励纳入此类论文。我们的审查政策不太注重定量或客观评价,决定将由编辑委员会负责做出。
近年来,随着互联网的普及和计算机计算能力的提升等信息技术的进步,人工智能技术的发展不断加速,我们看到人工智能技术所能实现的计算处理的精细化程度不断提高。 此外,随着人工智能技术的进步,所谓的生成性人工智能取得了显著进展,它可以根据用户的指令生成各种形式的内容,现在可以创建与人类自己创建的内容无法区分的内容。不仅有研究人员和企业参与生成型AI的开发,还提供一般用户可轻松使用的服务和软件的企业也不断涌现,以生成型AI的使用为中心进行创作活动的创作者也不断涌现。 在此背景下,关于生成型人工智能,版权所有者等担心人工智能在学习和生成数据时可能会侵犯其版权,人工智能开发者等担心开发人工智能时可能会侵犯版权或可能会创造出侵犯版权的人工智能,人工智能用户则担心使用人工智能可能会无意中侵犯版权。
Ⅰ 隔声施工标准方法 1 1.共同事项 1 1.1 基础 1 1.2 定义 1 1.3 适用范围 1 1.4 未指定的声学材料或隔音规格 1 1.5 文件 1 2. 2.隔音方案 1 2.1 所需隔音量 1 2.2 隔音施工方案 2 2.3 建筑固定装置的隔音量 2 2.4 金属密闭装置 3 2.5 玻璃块 3 2.6 室内吸声施工方案 3 3.通风方案 3 3.1 所需通风量和所需外部空气量 3 3.2 排气量 3 3.3 空气净化方法 3 3.4 吹出噪音 4 3.5 通风方法 4 3.6 单管通风方法 4 3.7 单独分散通风方法 5 4.空调方案 5 4.1 室内温湿度条件 5 4.2 冷热源 6 4.3 单风管空调系统 6 4.4 单独分布式空调系统 6 5.机房隔音、防震方案6
近年来,随着互联网的普及和计算机计算能力的提升等信息技术的进步,人工智能技术的发展不断加速,我们看到人工智能技术所能实现的计算处理的精细化程度不断提高。 此外,随着人工智能技术的进步,所谓的生成性人工智能取得了显著进展,它可以根据用户的指令生成各种形式的内容,现在可以创建与人类自己创建的内容无法区分的内容。不仅有研究人员和企业参与生成型AI的开发,还提供一般用户可轻松使用的服务和软件的企业也不断涌现,以生成型AI的使用为中心进行创作活动的创作者也不断涌现。 在此背景下,关于生成型人工智能,版权所有者等担心人工智能在学习和生成数据时可能会侵犯其版权,人工智能开发者等担心开发人工智能时可能会侵犯版权或可能会创造出侵犯版权的人工智能,人工智能用户则担心使用人工智能可能会无意中侵犯版权。 此外,在2023年5月举行的G7广岛峰会上,认识到需要立即评估在各国和各行业中日益突出的生成性人工智能所带来的机遇和挑战,并通过G7工作组启动了“广岛人工智能进程”,就生成性人工智能以及包括版权在内的知识产权保护等议题进行讨论。1此外,日本的AI战略委员会专家组同月编制了AI2.0相关问题临时概要,其中也提及了与版权相关的问题,并呼吁考虑采取必要的应对措施。 今年6月制定的《知识产权振兴计划2023年3期》也指出,关于生成型人工智能与著作权的关系,将从促进人工智能技术进步和保护创作者权利的角度,识别和分析具体案例,组织法律思考,并考虑必要措施。 版权法的解释,不仅仅是与生成性人工智能相关的解释,本质上应该根据每个个案的具体情况留给司法判断。但是,截至本报告撰写时,直接处理生成型人工智能与版权之间关系的判例和案件仍然很少。为了缓解上述对生成型人工智能与版权之间关系的担忧,我们认为,不应仅仅等待判例和案件的积累,而应该提出一定的解释方法。 因此,文化事务委员会著作权部法制分科(以下简称“分科”)将与创作者、表演者等权利人、开发和提供生成性AI服务的企业、生成性AI的用户等相关方举行听证会,并将报告AI战略会议、AI时代知识产权审查委员会4(内阁府知识产权战略推进事务局)等其他会议的讨论情况。
摘要 - 全球物联网(IoT)的采用取决于传感器节点的大规模部署和及时的数据收集。但是,在远程或无法访问的区域中安装所需的地面基础设施在经济上是没有吸引力或不可行的。成本效益的纳米卫星部署在低地球轨道(LEO)中是一种替代用解决方案:板载物联网网关可访问对远程物联网设备的访问,这是根据直接到卫星IoT(DTS-IOT)体系结构的访问。DTS-iot的主要挑战之一是设计通信协议,以通过同样受约束的轨道网关提供的数千种高度约束设备。在本文中,我们通过首先估计(移动)纳米卫星足迹下方设置的设备的(不同)尺寸来解决此问题。然后,我们证明了用于智能油门DTS-iot访问协议时估计的适用性。由于最近的工作表明,当网络尺寸估计可用时,MAC协议提高了DTS-IOT网络的吞吐量和能源效率,因此我们在此提出了DTS- IOT中的新颖且计算高效的网络尺寸估计器:基于乐观的碰撞信息(OCI)的估计器。我们通过广泛的DTS-iot场景模拟来评估OCI的有效性。结果表明,当使用网络尺寸估计时,基于Aloha的DTS- IOT网络的可伸缩性将增强8倍,最多可提供4×10 3设备,而无需罚款。我们还显示了OCI机制的有效性,并证明了其低计算成本实施,使其成为DTS-IOT网络估计的有力候选者。
4.1. 该计划可以概述各种现有综合建筑的电气化途径,包括文化机构、政府部门、国防设施、教育设施(包括各大学)、体育设施(如澳大利亚体育学院)和公寓楼。 4.2. 该计划可以通过考虑具有独特挑战的综合建筑来增强,例如研究建筑和医疗设施,它们使用化石燃料气体产生蒸汽进行消毒和加湿。 4.3. 为了为综合商业建筑或区域的脱气提供模型并与行业和其他组织分享经验,澳大利亚首都领地政府可以通过为在北领地试点实施集中式热中心提供支持,创建示范点,帮助克服先行者障碍。
将电子自旋纳入电子设备是旋转的核心思想。[1]这个不断增长的研究领域最终旨在在Terahertz(THZ)速率上产生,控制和检测自旋电流。[2]要实现这种高速自旋操作,旋转轨道相互作用(SOI),尽管很弱,但它起着关键作用,因为它将电子的运动与旋转状态相结合。[3]从经典的角度来看,SOI可以理解为旋转依赖性的有效磁场,该磁场会在相反的方向上偏转转移旋转和旋转传导电子(见图1 A)。SOI的重要后果是旋转厅效应(SHA)[4]及其磁反部分,即异常效果(AHE)。[5,6]在带有SOI的金属中,她将电荷电流转换为横向纯自旋