案例研究:整合北美电网 162 案例研究:电网拥塞 - 疏通北美电网动脉 167 4.1 输电线设计考虑因素 173 4.2 电阻 178 4.3 电导 181 4.4 电感:实心圆柱导体 181 4.5 电感:单相两线线路和相距相等的三相三线线路 186 4.6 电感:复合导体、不等相距、捆绑导体 188 4.7 串联阻抗:带有中性导体和接地回路的三相线路 196 4.8 电场和电压:实心圆柱导体 201 4.9 电容:单相两线线路和相距相等的三相三线线路204 4.10 电容:绞合导线、不等相间距、捆绑导线 206 4.11 分流导纳:带有中性导线和接地回路的线路 210 4.12 导线表面和地面的电场强度 215 4.13 并联电路三相线路 218
案例研究:整合北美电网 162 案例研究:电网拥塞 - 疏通北美电网动脉 167 4.1 输电线设计考虑事项 173 4.2 电阻 178 4.3 电导 181 4.4 电感:实心圆柱导体 181 4.5 电感:单相两线线路和相距相等的三相三线线路 186 4.6 电感:复合导体、不等相距、捆绑导体 188 4.7 串联阻抗:带有中性导体和接地回路的三相线路 196 4.8 电场和电压:实心圆柱导体 201 4.9 电容:单相两线线路和相距相等的三相三线线路 204 4.10 电容:绞合导线、不等相间距、捆绑导线 206 4.11 分流导纳:带有中性导线和接地回路的线路 210 4.12 导线表面和地面的电场强度 215 4.13 并联电路三相线路 218
模块 3:变压器单相变压器的原理、结构和运行、等效电路、相量图、电压调节、损耗和效率测试 - 开路和短路测试、极性测试、背对背测试、磁滞和涡流损耗分离三相变压器 - 结构、连接类型及其比较特点,单相和三相变压器的并联运行,自耦变压器 - 结构、原理、应用和与双绕组变压器的比较,磁化电流,磁芯材料非线性 BH 曲线的影响,磁化电流中的谐波,相位转换 - 斯科特连接,三相到六相转换,分接变压器 - 变压器的空载和有载分接变换,三绕组变压器。变压器的冷却。
直流电机:类型、发电机的 EMF 方程和电动机的转矩方程、直流电机的特性和应用;三相感应电机:类型、运行原理、滑差转矩特性、应用;单相感应电机:运行原理和启动方法介绍、应用。三相同步电机:交流发电机和同步电机的运行原理及其应用。
三相牵引电机类型 6 FRA 6068 用于 WAG9/WAP7 级机车。它是一种异步 6 极鼠笼转子电机,由三相转换器供电的三相电源运行。它通过非驱动端外壳中的通风口进行强制风冷。牵引电机鼓风机提供过滤空气来冷却牵引电机。柔性波纹管连接牵引电机通风口和机车底架上鼓风机的出风口。
TommaTech Trio Hybrid F 系列 12kW 三相低压混合逆变器,除了其相位不平衡输出支持功能外,还是具有 48V 电池系统电压的低压电池应用的理想解决方案。该逆变器系列与 TommaTech 低压锂电池完美配合,并具有远程控制功能,可轻松成为住宅和商业项目的首选。凭借其 12kW 功率,混合三相逆变器可以达到高容量,最多可并联 10 个单元,同时,该功率可以由锂电池持续支持。
摘要:本文介绍了一种用于光伏系统的三相交错升压转换器的突破性设计,利用并联的传统升压转换器来降低输入电流和输出电压纹波,同时提高动态性能。这项研究的一个显着特点是将锂离子电池直接连接到直流链路,从而无需额外的充电电路,这与传统方法不同。此外,MPPT 控制器和闭环模糊控制器与电流控制模式的组合可确保为所有三个相位生成准确的开关信号。精心调整的系统在输出电压中表现出非常低的纹波含量,超过了计算值,并表现出卓越的动态性能。研究延伸到对损耗的全面分析,包括电感器铜损和半导体传导损耗。在所有情况下,转换器的效率都超过 93%,凸显了其作为光伏系统有效解决方案的强大性能。
由于环境条件多变,光伏 (PV) 系统参数始终是非线性的。在多种不确定性、干扰和时变随机条件的发生下,最大功率点跟踪 (MPPT) 很困难。因此,本研究提出了基于被动性的分数阶滑模控制器 (PBSMC),以检查和开发 PV 功率和直流电压误差跟踪的存储功能。提出了一种独特的分数阶滑模控制 (FOSMC) 框架的滑动面,并通过实施 Lyapunov 稳定性方法证明了其稳定性和有限时间收敛性。还在被动系统中添加了额外的滑模控制 (SMC) 输入,通过消除快速不确定性和干扰来提高控制器性能。因此,PBSMC 以及在不同操作条件下的全局一致控制效率是通过增强的系统阻尼和相当大的鲁棒性来实现的。所提技术的新颖之处在于基于黎曼刘维尔 (RL) 分数阶微积分的 FOSMC 框架的独特滑动曲面。结果表明,与分数阶比例积分微分 (FOPID) 控制器相比,所提控制技术可在可变辐照度条件下将 PV 输出功率的跟踪误差降低 81%。与基于被动性的控制 (PBC) 相比,该误差降低 39%,与基于被动性的 FOPID (EPBFOPID) 相比,该误差降低 28%。所提技术可使电网侧电压和电流的总谐波失真最小。在不同太阳辐照度下,PBSMC 中 PV 输出功率的跟踪时间为 0.025 秒,但 FOPID、PBC 和 EPBFOPID 未能完全收敛。同样,直流链路电压在 0.05 秒内跟踪了参考电压,但其余方法要么无法收敛,要么在相当长的时间后才收敛。在太阳辐射和温度变化期间,使用 PBSMC,光伏输出功率在 0.018 秒内收敛,但其余方法未能收敛或完全跟踪,与其他方法相比,由于 PBSMC,直流链路电压的跟踪误差最小。此外,光伏输出功率在 0.1 秒内收敛到参考功率
EPC9147B 是一款接口板,可接受 TI LAUNCHXL 开发套件(例如 F28379D 或 F28069M,该套件具有 TI C2000 微控制器),并连接到兼容的三相 eGaN® FET/IC 电机驱动逆变器板,如右图所示。该接口板允许用户利用现有的 TI InstaSPIN_UNIVERSAL GUI 资源以及 EPC 专用文件来编程控制器板,并使用无传感器磁场定向控制和空间矢量脉冲宽度调制来控制由 eGaN FET/IC 三相逆变器供电的电机。