绝热进化是时间调制的超材料的新兴设计原理,通常受到拓扑量子计算(例如编织操作)的见解的启发。然而,对经典绝热超材料的追求源于以下假设:经典和量子绝热进化是等效的。我们表明,只有在所有频段的频率距离距0的频率之间,并且在经典系统中不能再现了量子绝热演化的某些实例,例如量子绝热演化的某些实例,例如量子绝热演化的某些实例,例如量子绝热进化的某些实例,在经典系统中不能再现。这是因为模式耦合在经典力学上根本不同。我们得出经典条件,以确保绝热性,并证明只有在这些条件下(与量子绝热条件不同),单个带浆果相位和Wilczek-Zee矩阵的任何地方都会出现,而堕落的波段则出现,因为它们会出现,这是编码经典绝热进化的几何形状的有意义的数量。最后,对于一般的多频道系统,我们在非亚伯仪仪上的经典系统潜力中发现了一个校正项。
抽象的超低能离子植入已成为掺杂二维材料和超薄膜的有吸引力的方法。基于二进制碰撞近似的新的动态蒙特卡洛计划Imintdyn允许对低能植入培养物和目标组成变化的可靠预测,以及对高能光离子散射的有效模拟。为了证明这些预测和模拟的质量,我们提出了一个模型案例实验,在该实验中,我们将W离子植入具有低(10 keV)和超低(20 eV)离子能量的四面体非晶碳中,并分析了W植入W具有高分辨率的Rutherford redScatter-Scattrant-ReClanter-Files。使用新的Imintdyn程序将该实验与对实验的离子固定相互作用的各个方面进行了完整模拟。一种独特的新型模拟选项,也与植入2D材料有关,是将空缺作为具有动态空位产生和歼灭的目标物种。虽然忽略空缺形成的模拟不能再现所测量的植入物,但我们发现模拟和测量的HR-RBS光谱之间有很好的一致性。我们还证明了同时弱碰撞在低弹丸能量下二进制碰撞近似中的重要作用。
摘要:冰的形成仍然是气候模型中代表最差的微物理过程之一。虽然已知主要的冰生产(PIP)参数化对建模的云特性具有很大的影响,但次级冰产生(SIP)的表示不完整,因此其相应的影响在很大程度上是毫无疑问的。此外,冰的聚集是总云冰预算的另一个重要过程,这在很大程度上也不受限。在这项研究中,我们使用挪威地球系统模型(Noresm2)研究了PIP,SIP和ICE聚集对北极云的影响。具有预后和诊断PIP的模拟表明,仅异质冻结不能再现观察到的云冰含量。Noresm2中缺失的SIP机制(胶水分解,掉落和升华分解)的实施可改善建模的冰属性,而液体含量中的图案仅在预后PIP的模拟中发生。但是,结果对碰撞分裂的描述很敏感。这种机制在所检查的条件下占主导地位,对升华校正因子的治疗非常敏感,升华校正因子的治疗是一种受使用的参数的约束参数。最后,冰聚集处理的变化也可以显着影响云特性,这主要是由于它们对碰撞分手效率的影响。总体而言,通过添加SIP机制来增强冰产量和冰聚集的减少(与浅北极云的雷达观察一致)导致云层覆盖率和降低TOA辐射偏见,与卫星测量相比,尤其是在寒冷的月份。