摘要1,3-二吡基-8-苯基黄嘌呤的胺官能化衍生物已以tri的形式制备,作为黄嘌呤胺(pH] XAC),用作用于腺苷受体的抗吸虫辐射。[3H] XAC具有较高的受体亲和力,较高的特异性活性,较低的非特异性膜结合,并且比1,3-二乙基-8-- [3H]苯甲胺更有利的亲水性,这是一种用于腺苷受体受体结合的黄嘌呤。在大鼠脑皮质膜中,[3H] XAC表现出可饱和的特异性结合,Kd为1.23 nm和A BM。在370c时为580 FMOL/mg的蛋白质。N6-(R-苯基丙酰丙基)腺苷是[3H] XAC结合的更有效的抑制剂,而不是5'-N-乙基辅助辅助腺苷,表明结合与Al-腺苷受体有关。在没有GTP的情况下,腺苷激动剂与[3H] XAC结合的抑制曲线是双相的,表明[3H] XAC与Al受体的低亲和力激动剂结合。在GTP存在下,腺苷类似物表现出[3H] XAC的结合的单相,低亲和力抑制。抑制[茶碱或各种8-苯基黄嘌呤的3HJXAC结合是单相的,并且这些效力与这些红明因作为腺苷受体拮抗剂的效力均具有均匀的效果。小牛脑膜中的受体部位对[3H] XAC表现出较高的亲和力(KD = 0.17 nm),而豚鼠中的部位表现出较低的富裕感(KD = 3.0 nm)。[3H] XAC结合位点的密度在所有物种的脑膜中相似。
微针作为一个多功能药品平台,可以利用该药物在皮肤中和整个皮肤中运送药物。在当前的工作中,聚(N-异丙基丙烯酰胺)(PNIPAM)合成并将其表征为开发生理响应式微针的基于微对药物的药物递送系统的新型材料。通常,该聚合物在较低温度下的膨胀状态和较高温度下更疏水状态之间可逆地过渡,从而实现精确的药物释放。这项研究表明,溶解由PNIPAM制成的微针斑块,结合了Bis-PNIPAM(一种交联聚合物变体)具有增强的机械性能,这可以从微针的较小高度降低(〜10%)中可见。尽管仅使用PNIPAM的微针是可以实现的,但它表现出较差的机械强度,需要包括其他聚合物赋形剂(例如PVA)来增强机械性能。此外,热响应聚合物的结合对针的插入性能没有显着(p> 0.05),因为所有配方都插入了500 µm的所有配方中,将其插入离体皮肤中。Furthering this, the needles were loaded with a model payload, 1,1 ′ -dio ctadecyl-3,3,3 ′ ,3 ′ -tetramethylindodicarbocyanine perchlorate (DID) and the deposition of the cargo was moni tored via multiphoton microscopy that showed that a deposit is formed at a depth of ≈ 200 µ m.另外,还发现交联 - PNIPAM(BIS-PNIPAM)制剂仅在4小时后才表现出染料的显着皮肤,与所使用的赋形剂基质无关。在非交联的PNIPAM制剂中不存在此现象,表明BIS-PNIPAM微针中的沉积物形成。总的来说,这项概念证明的研究使我们对使用PNIPAM溶解微对甲的制造的可能性提出了我们的理解,这可以利用,该制造可以用于将纳米颗粒沉积到真皮中,以在皮肤内扩展药物释放。
背景 异色瓢虫(Harmonia axyridis)是一种体型较大(5-8 毫米)、食欲旺盛的瓢虫,被广泛认为是世界上最具入侵性的昆虫之一。其原生范围是中亚和东亚,但被引入北美和欧洲作为生物防治剂。其传播迅速,现已遍布北美洲、中美洲和南美洲、欧洲和非洲。微卫星研究表明,北美东部的一个入侵种群是入侵欧洲、南美洲和南非的种群的来源(Lombaert et al., 2010)。异色瓢虫于 2003 年首次在英国东南部被记录。自到达后,其传播迅速,现已遍布英国,并已在爱尔兰、奥克尼群岛、设得兰群岛、海峡群岛、锡利群岛和马恩岛被记录在案。其是高度多态性的物种,具有若干种公认的形态。鞘翅颜色范围为黄色、橙色、红色或黑色,带有 0-21 个黑色斑点、4 或 2 个红色/橙色斑点。腿部始终为棕色,腹部为深色,带有红棕色边框。小丑瓢虫是一种杂食性动物,以蚜虫以及软果、花粉、花蜜和许多其他软体昆虫(包括其他瓢虫幼虫)为食。它以成虫越冬,经常出现在成虫聚集的建筑物中。该物种的血淋巴含有高浓度的异丙基甲氧基吡嗪(Al Abassi 等人,1998 年)和哈尔班碱(Nagel 等人,2015 年),并且在受到刺激时很容易自体出血。防御性分泌物具有恶臭,并可能导致染色。此外,它还会叮咬人类(Ramsey & Losey,2012),因此该物种被视为小型家居害虫。 异色瓢虫的传播与其他本地瓢虫物种的急剧下降有关。据信,这是由于异色瓢虫在竞争中胜过其他蚜虫物种以及集团内捕食所致(Majerus et al.,2006)。
摘要:靶向药物输送系统的开发一直是纳米医学中的关键区域,应对低药物加载能力,不受控制的释放和全身毒性等挑战。本研究旨在开发和评估双官能化介孔二氧化硅纳米颗粒(MSN),以靶向塞来氧基靶向递送,增强药物载荷,实现受控释放,并通过胺嫁接和咪唑基聚乙醇激素(PEI)降低全身毒性。MSN,并用(3-氨基丙基)三乙氧基硅烷(APTES)官能化,以创建胺移植的MSN(MSN-NH 2)。celecoxib被加载到MSN-NH 2中,然后将咪唑官能化的PEI(IP)守门人结合通过碳二二胺偶联。使用傅立叶转换红外光谱(FTIR)和质子核磁共振(1 H-NMR)进行表征。在pH 5.5和7.4处的药物加载能力,夹带效率和体外药物释放。细胞毒性。合成的IP通过FTIR和1 H-NMR确认。氨基接枝的MSN表现出塞来昔布的负载能力为12.91±2.02%,比非官能化的MSN高2.1倍。在体外释放研究中显示,pH响应性行为在pH 5.5时从MSN-NH 2-Celecoxib-IP中释放出明显更高的塞来昔布,而pH 7.4则在2小时内释放率提高了33%。细胞毒性测试表明,与PEI处理的细胞相比,IP处理的细胞的细胞活力明显更高,从而确认毒性降低。MSN与胺接枝和咪唑基PEI守门人的双重功能增强了Celecoxib的负载,并提供受控的pH反应性药物释放,同时降低全身毒性。这些发现突出了该晚期药物输送系统对靶向抗炎和抗癌疗法的潜力。
摘要:人们普遍认为溶解有机物 (DOM) 可以控制环境中痕量金属的溶解度和反应性。然而,控制金属-DOM 络合的机制仍然不清楚,主要是因为在组成 DOM 的复杂有机化合物混合物中分离和定量金属-有机物种的分析难度很大。本文,我们描述了一种使用液相色谱在线电感耦合等离子体质谱 (LC-ICP-MS) 对有机-金属络合物进行定量分离和元素特异性检测的方法。该方法实施柱后补偿梯度以稳定整个 LC 溶剂梯度中的 ICP-MS 元素响应,从而克服了实现 LC-ICP-MS 定量准确度的主要障碍。通过外部校准和内部标准校正,该方法得到的有机-金属络合物浓度始终在其真实值的 6% 以内,无论络合物的洗脱时间如何。我们利用该方法评估了四种固定相(C18、苯基、酰胺和五氟酰基苯基丙基)对苏旺尼河富里酸和苏旺尼河天然有机质中环境相关痕量金属(Mn、Fe、Co、Ni、Cu、Zn、Cd 和 Pb)回收率和分离率的影响。C18、酰胺和苯基相通常可获得最佳的金属回收率(除 Pb 外,所有金属的回收率均 > 75%),其中苯基相分离极性物质的程度大于 C18 或酰胺相。我们还对氧化和还原土壤中有机结合的 Fe、Cu 和 Ni 进行了分馏,揭示了土壤氧化还原环境中金属-DOM 形态的不同。通过对 DOM 结合金属进行定量分馏,我们的方法为加深对整个环境中金属-有机络合物的机理理解提供了一种手段。■ 引言
B.Pharm 学生,Amepurva Forum 的 Nitant 药学研究所 摘要 超分子化学显著推动了药物输送系统的发展,为增强药物稳定性、溶解度和靶向输送提供了新方法。本综述探讨了药物输送中使用的各种超分子载体,包括环糊精、主客体系统、树枝状聚合物和自组装纳米结构。我们讨论了药物包封和释放的机制,强调了最近的进展,并解决了该领域的当前挑战。我们还考虑了未来的研究方向和在临床环境中的潜在应用。 关键词:超分子设计、药物输送、环糊精、主客体系统、树枝状聚合物、自组装 1. 简介 1.1 背景 随着超分子化学的出现,药物输送领域发生了重大变化。基于非共价相互作用的超分子系统为提高药物溶解度、稳定性和靶向能力提供了创新的解决方案 (1)。 1.2 目标 本综述旨在全面概述药物输送中的超分子设计策略,重点介绍最新进展、机制、应用和未来前景。 2. 药物输送中的超分子载体 2.1 环糊精 2.1.1 结构和性质 环糊精是具有亲水外表面和疏水核心的环状寡糖。这种独特的结构使它们能够与各种药物形成包合物,从而提高其溶解度和稳定性(2、3)。 2.1.2 应用 环糊精已用于多种药物制剂中,以改善难溶性药物的输送。例子包括用于抗炎和抗癌药物的羟丙基-β-环糊精(4)。 2.1.3 挑战 环糊精的局限性包括其载药能力和潜在毒性。正在探索环糊精衍生物的进展以解决这些问题(5)。
摘要 - 口服鳞状细胞癌(OSCC)是上颌面和口腔区域中常见的恶性肿瘤,预后较差。Therefore, in the present letter, we have developed for the first time screen printed electrode (SPE) based affordable, simple, and ultrasensitive electrochemical immunosensor using a green synthesized hematite nanoparticles (α-Fe 2 O 3 NPs) supported on reduced graphene oxide (rGO) nanocomposite for determination of CYFRA-21-1 cancer biomarker.α-FE 2 O 3 NPS_RGO复合材料是使用cinnamomum tamala的叶子提取物制备的。3-氨基丙基三氧基硅烷(APTES)有助于α-Fe 2 O 3 NPS_RGO纳米复合材料的功能化,并被滴入SPE的工作区域,然后与抗Cyfra-21-1抗体以及抗Cyfra-21-1抗体以及Bovine and Bovine and Bovine Cholum Cherm Chers(BSA)一起固定BSA/抗CYFRA-21-1/APTES/α-Fe 2 O 3 NPS_RGO/SPE免疫平板。使用傅立叶变换红外光谱(FTIR),X射线衍射(XRD),差异脉冲伏安电疗(DPV)以及环状伏安(CV)来研究晶体结构,以及研究晶体结构,以及晶体结构。发达的免疫传感器描述了具有广泛线性(0.5-20 ng/ml)的显着电化学特性,定量限(LOQ)为0.048 ng/ml,低检测限为0.014 ng/ml,高敏感性和高敏感性,高敏感性为90.42 µA(log/ml)(log/ml)-1 cm -2。 此外,它对CYFRA-21-1生物标志物显示出很高的可重复性和良好的选择性。此外,它对CYFRA-21-1生物标志物显示出很高的可重复性和良好的选择性。因此,这封信解锁了探索绿色合成α-FE 2 O 3 NPS_RGO的电化学行为的创新前景及其制造电化学生物传感器以及护理点(POC)传感设备的功效。
抽象拔牙是从牙槽过程中去除牙齿的过程。拔牙过程总是会导致硬组织和软组织造成组织损伤。基于2018年基本健康研究的结果,印度尼西亚的牙齿提取率达到2.9%。暴露于口腔环境的牙齿插座伤口允许进入致病性微生物,这会导致肺泡骨炎,骨瘘和菌血症。除此之外,拔牙后的插座受伤会导致患者的口腔不适。拔牙引起的伤口通常会导致疼痛并干扰饮食活动。海绵下的牙齿拔牙后有效治愈伤口,并且经常用于牙科。Spongostan有几个弱点,包括它会引起血肿,异物过敏反应,广泛的纤维化和有毒休克综合征的事实。在拔牙后,在伤口愈合过程中,在人类去角质的落叶牙齿(棚)衍生的分泌组凝胶中确定干细胞的潜力。分泌组具有血管生成,神经发生,组织修复,免疫调节,伤口愈合,抗纤维化和抗菌和组织再生的潜力。众所周知,间充质干细胞的分泌组包含各种细胞因子和生长因子。干细胞分泌组在组织中的稳定性和保留率较低,因此需要与生物材料相结合,以克服秘密组的低组织保留率,并受控生物活性材料以进行组织愈合。基于羟丙基甲基纤维素(HPMC)凝胶作为含有抗炎细胞因子和生长因子的载体培养基的原发性牙齿干细胞分泌组的组合,预计可以用作免疫调节剂,从而改善炎症后牙齿拔出后伤口愈合过程的免疫调节剂。来自人类去角质落叶牙齿(棚)衍生的秘密凝胶的干细胞有可能加速拔牙后伤口愈合过程。
过去十年,增材制造(又称光聚合 3D 打印)取得了显著进步,使修复牙科的数字化制造成为可能。[1] 如今,3D 打印在牙科领域的应用包括牙科模型、手术导板、透明矫正器、夜间护齿器和夹板。[2,3] 构建精度和资源效率都得到了提高。[4] 立体光刻、数字光处理 (DLP) 和连续液体界面生产等现代 3D 打印技术利用了光聚合,并使用在紫外线照射下发生自由基链增长聚合的树脂。[1] 通常,将不同的光反应性(甲基)丙烯酸酯单体混合在一起形成配方,以定制材料特性。[5] 低树脂粘度(0.1 和 1.3 Pa s)是光聚合 3D 打印应用的主要要求,而光喷射需要的粘度甚至更低,约为 0.01 Pa s。通常会添加反应性稀释剂来降低配方的粘度。[6] 此外,为了设计机械性能,还会使用(甲基)丙烯酸酯功能低聚物。它们可分为三大类,即聚酯(甲基)丙烯酸酯、丙烯酸低聚聚氨酯和环氧丙烯酸酯。[7] 配方中经常含有双酚 A (BPA) 衍生物,例如 2,2-双[4-(2-羟基-3-甲基丙烯酰氧丙基)-苯基]丙烷,也称为双酚 A 甲基丙烯酸缩水甘油酯 (BisGMA)。加入基于 BPA 的刚性芳香族结构可使材料具有高刚度和高玻璃化转变温度,而 BisGMA 的侧链羟基可使其对玻璃、骨骼或牙釉质表面具有良好的粘附性。[8] 这些特性,再加上低固化收缩率,使得 BisGMA 广泛应用于牙科修复材料和热固性材料中。 [9] 尽管如此,使用双酚 A 基树脂也应受到严格审查,因为一些结果表明,双酚 A 的释放要么来自单体杂质,要么来自聚合物降解。[10] 由于 BPA 具有类似雌激素的特性,因此使用基于 BPA 的树脂
葡萄酒微生物群落建立了复杂的生态系统,调节香气化合物的形成,但只有少数研究寻求特定微生物与葡萄酒挥发性物质之间的相关性。本研究结合了代谢条形码和代谢组学,以识别与杜罗河标志性地区 3 个著名品种的葡萄酒挥发性特征相关的真菌和细菌微生物生态位。在整个自然发酵过程中,鉴定了三个主要的微生物生态位,并且 Hanseniaspora - Saccharomyces 的演替时间取决于品种。最大的生态位包括 Hansenias pora、Aureobasidium、Alternaria、Rhodotorula、Sporobolomyces、Massilia、Bacillus、Staphylococcus 和 Cutibacterium,它们与 7 种代谢物呈正相关,即乙偶姻、乙酸异戊酯、丙酸乙酯、c-3-己烯醇、苯乙醚和 4-乙基苯酚。发酵酵母S. cerevisiae、Torulaspora delbrueckii和Meyerozyma caribbica与γ-丁内酯、t-威士忌内酯、异戊醇、癸酸乙酯、异丁酸乙酯、琥珀酸二乙酯、异戊酸、4-乙基愈创木酚和4-丙基愈创木酚呈强相关性。 Lachancea quebecensis 与几种致病真菌(青霉菌、白粉病菌、核盘菌、曲霉菌、Mycosphaerella tassiana)和细菌(假单胞菌属、酸拟杆菌、泛菌、Steno trophomonas 和 Enhydrobacter)聚类,与各种单萜醇和降异戊二烯类化合物(包括芳樟醇和 β-紫罗兰酮)呈正相关,此外还与苯甲醇、二乙酰、乙酸异丁酯、乙基香草酸酯和甲基香草酸酯呈正相关。代谢物-微生物群相关性表明品种特异性可能是区域芳香特征的基础。