b“在这项工作中,我们为 Jiang 等人的 T RH 变换提供了新的、更严格的证明。(ASIACRYPT 2023),它将 OW-CPA 安全 PKE 转换为具有 IND-1CCA 安全性的 KEM,这是典型 IND-CCA 安全性的变体,其中只允许单个解封装查询。此类 KEM 非常高效,并且 Huguenin-Dumittan 和 Vaudenay 在 EUROCRYPT 2022 上证明了它们足以用于实际应用。我们在随机预言模型 (ROM) 和量子随机预言模型 (QROM) 中重新证明了 Jiang 等人的 T RH 变换,适用于底层 PKE 是刚性确定性的情况。在 ROM 和 QROM 模型中,我们的归约都实现了 O (1) 的安全损失因子,显着改善了 Jiang 等人的结果,其在 ROM 中的安全损失因子为 O (q),在 QROM 中的安全损失因子为 O q 2。值得注意的是,我们严密 QROM 缩减的核心是一个名为 \xe2\x80\x9creprogram-after-measure\xe2\x80\x9d 的新工具,它克服了 QROM 证明中由 oracle 重新编程造成的缩减损失。该技术可能具有独立意义,并且可用于实现其他后量子密码方案的严密 QROM 证明。我们注意到,我们的结果还提高了 Huguenin-Dumittan 和 Vaudenay (EUROCRYPT 2022) 的 TH 变换(也将 PKE 转换为 KEM)的缩减严密性,正如 Jiang 等人提供了从 TH 变换到 T RH 变换的严密缩减(ASIACRYPT 2023)。“
基于格的密码学的创始成果之一是将短整数解问题量子简化为 Regev 引入的带错误学习问题。Chen、Liu 和 Zhandry 最近指出,可以通过将带错误学习问题替换为量子等效问题(其中错误以量子叠加形式给出)来使这种简化更加强大。在代码的背景下,这可以适应从查找短代码字简化为随机线性代码的量子解码问题。因此,我们在本文中考虑量子解码问题,其中我们给出了代码字的噪声版本的叠加,我们想要恢复相应的代码字。当我们测量叠加时,我们会得到通常的经典解码问题,其中最佳已知算法处于恒定速率和错误率范围内,与代码长度呈指数关系。但是,我们将在这里展示,当噪声率足够小时,量子解码问题可以在量子多项式时间内解决。此外,我们还表明,对于噪声率,该问题原则上可以量子地(尽管不是有效的)解决,而由于信息论的原因,相关的经典解码问题根本无法解决。然后,我们在代码的背景下重新审视 Regev 的归约。我们表明,在 Regev 的归约中使用我们的算法来解决量子解码问题,可以与已知的最佳短码字问题量子算法相媲美。这在某种意义上表明了 Regev 归约在考虑量子解码问题时的严密性,也为短码字问题的新量子算法铺平了道路。