摘要简介:最近,许多领先的全球社会努力促进质子治疗技术,以使其普遍使用。目标是为所有受益于此的癌症患者提供质子疗法,从而提高其整体生活质量。这个共同的目标是全球范围内的辐射肿瘤学家,医学物理学家,放射治疗师和医院主管。引入质子治疗系统,再加上对动量分析系统的调整,具有潜在的临床益处。材料和方法:动量分析系统通常会修改临床质子束的能量,从而影响Bragg峰的形状和位置。Fluka是一种基于蒙特卡洛的软件,用于通过将质子束引导到水幻影中来模拟各种光束设置。分析了所得的bragg峰,并将其与不同设置模拟的峰进行了比较。结果:研究结果表明,在所有潜在的肿瘤深度中,Bragg峰在带有和没有调节剂的质子治疗系统中发生变化。结果表明,对于深肿瘤(例如前列腺(例如前列腺)到Z = 2.6 cm的Z = 31.4 cm的位置,对于脊柱轴肿瘤的位置,仅通过调节调节剂= 5至∆Z调节仪的调节剂深度= 30 cm的能量水平,而无需更改Proton的能量水平。结论:对这些结果的研究可能是潜在的剂量结果,特别是对于有兴趣获得这种质子治疗系统以治疗和管理肿瘤在不同深度的诊所。
最能容纳开发。核心战略政策 DS1(DS 代表发展战略)列出了所谓的“DS1 村庄”——这些地方可以在不损害景观的情况下容纳开发,前提是开发位于定居点“之内或边缘”,而不是分散在整个景观中。住房和就业的目标合乎逻辑地将大多数开发引向白峰和德文特谷的广泛村庄,因为那里有大多数村庄和大多数人。在黑峰和荒原边缘,住房开发仅限于几个荒原边缘的 DS1 村庄。这里的就业主要限于农业和庄园管理。西南峰有一系列非常小的 DS1 村庄分布在整个地区,与白峰和德文特谷相比,人口较少。
单色光或进入特定周期性培养基的物质波显示出尖锐的bragg散射到特定的角度。然而,随机干扰完美的晶格位置会导致布拉格峰之间的弥散散射。随着分散体的增加,弥散散射最终占主导地位,最后,布拉格峰消失了。弥散散射是结构化的,在介质中揭示了相关性。例如,用于在水中X射线散射[1,2],可见光在单分散聚苯乙烯珠的无序堆积中的散射[3,4],这对相关函数具有宽峰,具有特征长度尺度,这又在结构函数中产生宽峰。在无序培养基的研究中,布拉格峰与周期性结构有关[5,6]。但是,没有预期的是,在任何规模上没有完美顺序的随机介质可以产生尖锐的散射角度,但我们在这里报告了这样的情况。对于我们选择的潜力,空间自相关函数具有宽峰,因为原子对相关函数在水中,但散射角度仍然非常清晰。这很令人震惊;下面定义的随机电势中的散射就像是在周期性电势中的布拉格散射,而不是相关液体中的散射。最接近的类似物(尽管不是完美的类似物)是粉末衍射,许多随机定向的微晶被密切包装。下面定义的电势没有这样的“微晶”,但它具有bragg峰。但是,散射的时间演变与Fermi的黄金法则不兼容,如下所述。我们通过检查电势的傅立叶成分来计算散射矩阵元素或等效地来解释这一惊喜。我们考虑以下形式的随机电势
摘要——开发具有窄带和可调光谱灵敏度的高性能多光谱光电探测器具有重要意义,但迄今为止仍然极具挑战性。本文,我们报道了一种 Si Au/n 型 Si/Au 光电探测器,它不仅在紫外线而且在近红外区域都具有可调窄带灵敏度,这与受控电荷收集变窄 (CCN) 机制有关。此外,当偏压从 0.1 变为 -0.1 V 时,该器件的负响应峰可以从 365 nm 轻松调整到 605 nm,正响应峰可以从 938 nm 调制到 970 nm。特别是,当负响应峰和正响应峰分别接近紫外短波长端和近红外长波长端时,半峰全宽分别小至 92 nm 和 117 nm。器件在紫外-可见光和近红外区域的响应极性相反,使得目前的硅光电探测器在未来的多波段光电系统中具有潜在的重要意义。
并在 400 C 下进行疲劳测试,我们可以看到 a 相的证据。由于辐射导致的 (111)~, 峰的 X 射线线增宽掩盖了 (ll0)a 峰,因此证据基于 (211)a 和 (200)a 峰,这两个峰具有第二高的强度。在相同的辐射和测试温度下对冷锻回火样品进行 X 射线衍射,得到 a 相的负面迹象。值得注意的是,CST 样品在辐射和测试之前在 760 C 下进行了最终回火,以稳定结构,从而去除 a 相。我们表明,冷加工和冷锻回火处理的有益效果在 700 C 时大致相同,并且在 600 C 测试中存在。循环硬化行为
并在 400 C 下进行疲劳测试,我们可以看到 a 相的证据。由于辐射导致的 (111)~, 峰的 X 射线线增宽掩盖了 (ll0)a 峰,因此证据基于 (211)a 和 (200)a 峰,这两个峰具有第二高的强度。在相同的辐射和测试温度下对冷锻回火样品进行 X 射线衍射,得到 a 相的负面迹象。值得注意的是,CST 样品在辐射和测试之前在 760 C 下进行了最终回火,以稳定结构,从而去除 a 相。我们表明,冷加工和冷锻回火处理的有益效果在 700 C 时大致相同,并且在 600 C 测试中存在。循环硬化行为
在恒定pH下的讨论和讨论,盐的线性梯度将以提高拓扑异构形式的复杂性顺序解脱质粒DNA。由于不同形式的质粒DNA之间的相对电荷方差相对较高,因此可以使用离子交换柱有效分离它们。通过强阴离子交换分离时,发现质粒DNA样品包含两个分辨峰。假定较大的,后来的洗脱峰是超螺旋质粒DNA,而两个质量较小(大约是主要峰的0.5%)是质粒的线性形式(图1)。图2覆盖该质粒样品,并用稀释剂注入,证实较小的峰与质粒有关。超卷质质粒在强阴离子交换(SAX)固定相上表现出更高的保留率,并具有基线分离。
图 S2(a) 和 S1(b) 分别显示了合成状态和氢化硅化 Si-QDs(样品 1)的 Si 2p 光谱。合成状态的 Si-QDs 在 99.6 和 100.5 eV 处出现峰,分别对应于 Si 2p 1/2 和 Si 2p 3/2 ,这是元素 Si 的特征,还有其他氧化 Si 物质,Si 1+(100.4 eV)、Si 2+(101.9 eV)、Si 3+(102.6 eV)和 Si 4+(103.7 eV)。1, 2。元素 Si 峰的存在证实样品由 Si 制成。宽氧化峰表明氢化物端接的 Si-QDs 在转移过程中与环境氧发生了反应,而 Si-QDs 本质上并不存在这些反应。对于氢化硅化 Si-NC(图 S2(b)),我们发现元素 Si 峰与合成样品类似,还有对应于 Si-C(101.3 eV)和 Si- R/Si(O)R(101.8 和 102.3 eV)3 的峰,而氧化 Si 物质没有产生显著贡献。图 S2(c) 中所示的氢化硅化 Si-QDs 的 C 1s 光谱分别显示存在 C=C(284.5 eV)、CC(285.1 eV)和 C- Si(283.9 eV)4,没有氧化物相关峰,与 Si 2p 元素光谱一致。该结果与 FTIR 观察结果一致,并证实了氢化物封端的 Si-QDs 通过氢化硅化用烷基钝化。