电喷雾离子束中发射物质的角度分布尚未得到很好的表征,并且会对推进性能和发射器寿命产生负面影响。我们使用飞行时间质谱法对单个电喷雾离子束中发射物质的角度分布与发射电压的关系进行了实验表征。角电流分布表明发射中心轴与发射器尖端中心轴的最大偏差为 10 ◦。离子物质随角度的变化取决于发射电压。单粒子轨迹的模拟表明,离子团簇的碎裂会导致离子产物移近光束中心,而中性产物扩散至 47 ◦,具体取决于碎裂发生的速度。将实验结果与电喷雾发射的多尺度全光束模拟进行了比较,并讨论了未来使用这些模拟来解释角光束行为。
电喷雾离子束中发射物质的角度分布尚未得到很好的表征,并且会对推进性能和发射器寿命产生负面影响。我们使用飞行时间质谱法对单个电喷雾离子束中发射物质的角度分布与发射电压的关系进行了实验表征。角电流分布表明发射中心轴与发射器尖端中心轴的最大偏差为 10 ◦。离子物质随角度的变化取决于发射电压。单粒子轨迹的模拟表明,离子团簇的碎裂会导致离子产物移近光束中心,而中性产物扩散至 47 ◦,具体取决于碎裂发生的速度。将实验结果与电喷雾发射的多尺度全光束模拟进行了比较,并讨论了未来使用这些模拟来解释角光束行为。
没有一个人落后的原则起源于拉丁语Nemo Resideo,在战争中用来表现人们的生命对他们作为一个单一实体的功能的依赖,这意味着永远不要放弃任何受伤或无能力在战场上受伤或无能为力的人。这种军事伦理从那以后影响了其他努力领域。,没有抛弃任何人的原则成为2030年可持续发展议程的中心轴,这并不是偶然的,削减了其17个可持续发展目标(SDG)。所有国家和利益相关者共有的共同愿景是,可持续发展是所有人的,除非为地球上的每个人满足目标,指标和目标,否则目标,指标和目标将不会实现。因此,如果将社会的弱势群体排除在外并留在后面,则不可能进行可持续发展。
亲爱的编辑,随着 VLSI 技术的发展,环栅 (GAA) 硅纳米线晶体管 (SNWT) 已成为技术路线图末端最终缩放 CMOS 器件最有潜力的候选者之一。一些先驱研究已经证明了 GAA SNWT 的超可扩展性和高性能 [1-3]。然而,在实际制作结果中 [1,2],由于纳米线对蚀刻工艺的阴影效应,环栅栅极电极通常不是关于纳米线中心轴理想对称的,而是沿纳米线轴向呈梯形横截面。栅极电极的这种不对称性会使性能评估不正确,并导致用于电路仿真的器件紧凑模型不准确。然而,对非对称 GAA 硅纳米线 MOSFET 建模的研究仍然不足 [4,5]。本研究建立了非对称栅极GAA SNWT的有效栅极长度模型,并用技术计算机辅助设计(TCAD)仿真对其进行了验证。利用所提出的模型,可以将非对称GAA SNWT视为等效对称器件,从而可以在电路仿真中简化建模参数。仿真与方法。图1(a)沿沟道方向描绘了非对称栅极GAA SNWT的横截面。在
该系列介绍了12项未发表的作品,讨论了生物技术在人体生产或转型过程中的作用,目前是通过在巴西,葡萄牙和阿根廷进行的调查。这是生物技术,公共卫生和科学在生活研究网络中推广的表达的结果,该研究网络将专门的研究人员和研究人员整合,以调查各种情况下知识和生物技术实践的生产和影响。讨论的中心轴围绕着新技术科学的可能性针对身体并在SO所谓的生命科学中构成的方式转化了一系列当代社会的紧张局势。最基本的是这里提出的贡献,这可能是关注个人改善或集体健康之间的。这种张力可以与整个20世纪过去经过的社会医学化过程有关,并且仅通过先前被认为是从生命中被认为是正常的状况(例如衰老,怀孕,青春期)的条件转化而来的(Conrad,2007年)。最近,在这种情况下,新生物技术的发展引起了一定的变化,并产生了特定的轮廓,这已经通过生物医学化的概念来更好地翻译。根据Clarke及其同事(2010年)的说法,生物医学化允许描述由于技术性生物医学的创新而重新定义医学化的复杂,多向和多向过程。在此过程中,许多医学干预已寻求个人改进,塑造新的文化或“真实制度”,以中心为中心
确定施加载荷的位置点,以避免在航空航天应用中使用的薄层中扭曲。了解弯曲梁中中性轴和中心轴的区分的概念。理解用于分析经受扭转的非圆形条开发的类比模型,并分析滚动体和三维体中压力之间产生的应力。单位– I:剪切中心:弯曲轴和剪切中心的公理对称和不对称切片。不对称的弯曲:经受非对称弯曲的梁中的弯曲应力,由于非对称弯曲而导致的直束的挠度。单位– II:弯曲梁理论:绕线应力的Winkler Bach公式 - 局限性 - 校正因子 - 弯曲梁中的宽度应力 - 闭合环,受到链接链路中的浓缩和均匀载荷应力。单位– III:扭转:线性弹性溶液prandtl弹性膜(肥皂膜)类比;狭窄的矩形横截面,空心的薄壁扭转构件,倍数连接的横截面。单元– IV:接触应力:简介,确定接触应力的问题,基于接触应力的解决方案的假设;主压力的表达;计算接触应力的方法,体接触中的身体挠度;在狭窄的矩形区域(线接触)上接触的两个物体的应力(线接触)正常为面积,两个物体接触的应力,正常和切线与接触区域的负载。教科书:1。Boresi&Sidebottom的高级材料力学,Wiely International。2。和较好的J.N.单位– V:介绍三维问题:棱柱形杆的均匀应力拉伸,其自身的重量扭曲恒定横截面的圆形轴,板的纯弯曲。Timoschenko S.P.的弹性理论McGraw,Hill Publishers 3 Rd Edition参考书:1。材料的高级强度由Den Hortog J.P. 2。 Timoshenko的板块理论。材料的高级强度由Den Hortog J.P. 2。Timoshenko的板块理论。Timoshenko的板块理论。
目前在瑞典正在进行长期车辆组合(LCV)的引入,这为降低运营成本提供了机会,同时改善了每吨公里的缩放和二氧化碳排放。LCV是指超过25.25米的重型车辆,这是根据瑞典规则的常规长度限制。尽管有好处,但问题是这些车辆在路上的表现。本论文研究并分析了LCV实验的自然主义驾驶数据(NDD)的帮助。使用基于绩效的标准(PBS)进行绩效评估。PBS是用于重型车辆的调节系统,例如LCV,它需要吵架并需要车辆的行为。本文中使用的主要PBS尺寸是低速的背部加固,轨道偏差和扫荡区域。背面加固代表了从车辆组合的前部到后部的运动加强,这与其稳定性有关,其余两个表示车辆在不同情况下占用的空间。此外,转向恢复速度(SRR)用于以低速计算驾驶员的认知工作量,例如在回旋处和交叉点驾驶时。在本文中研究了两个LCV变体,该论文是由拖拉机拖车 - 拖车/拖车拖车拖车组成的A双变体,以及一个由卡车组成的二人组合,该卡车绘制了两个带有中心轴的拖车。本文论文感兴趣的四种情况:文件更换,通过回旋处的操作,在交叉路口的摇摆和紧密曲线驾驶。论文提出了三项贡献,描述了分析方法和随后的结果讨论。在第一个贡献中,开发了一种算法,以从LCV车辆的自然驾驶数据中提取文件更改,在该数据中,该方法用于来自A-Double Deakic的数据。结果表明,在文件更改期间,A-Double车辆遵守建议的安全限制。在第二个贡献中,在NDD的帮助下,在回旋处评估了A双车的性能。研究了不同半径的不同回旋处。与半径较大的回旋处相比,车辆在回旋处占据了更多的空间,在所有情况下,占用的空间都低于拟议的安全限制。对于比本研究中包含的回旋处,可能需要可控的轴。此外,驾驶员的认知负荷随着回旋处的半径而变化,在该回旋处的驾驶员较大的回旋处的驾驶员具有较低的认知负载。第三个贡献是关于在四种情况下对二人组合的绩效评估,然后与A-dubble车辆进行了比较。结果介绍的是,A-Double车辆和二人组合都稳定,并且在大多数情况下都具有良好的跟踪性能。在文件更换中,观察到一辆可简约的车辆更稳定,而二人组合在低速场景(例如回旋处和交叉点)下具有更好的可操作性。
摘要:变速箱是一种机械动力传输装置,最常用于获得速度和扭矩方面的机械效益。变速箱由不同类型的齿轮组成,这些齿轮按级联顺序组装以执行预期任务。变速箱内任何旋转部件发生故障都将终止与其相关的机械系统的工作状态。这会导致行业服务中断,从而产生昂贵的赔偿。特别是在航空发动机中,它被用作辅助驱动器,为液压、气动和电气系统提供动力。这促使人们监测变速箱的健康状况。本文简要回顾了 GHCM(变速箱健康状况监测)、变速箱故障、时域特征概述、频域特征、时频域;特征提取技术和故障分类技术。本研究的结果是提供有关变速箱健康状况监测的简要信息。关键词:变速箱故障、GHCM、故障分类技术。1.简介 变速箱是一种附件驱动器,是飞机燃气涡轮发动机的一部分。附件变速箱为液压、气动和电气系统提供动力。它驱动燃油泵、油泵和测速发电机。附件变速箱通过径向驱动轴与高压压缩机耦合,变速箱所需的动力来自连接发动机涡轮和高压压缩机部分的中心轴。附件单元的动力从旋转的发动机轴通过内部变速箱输送到外部变速箱,内部变速箱为附件提供运动并将附件齿轮驱动分配给每个驱动单元 [1]。图 1 显示了航空发动机中变速箱的安装位置。在一些早期的发动机中,径向轴用于驱动每个附件单元。虽然它提供了将附件单元放置在所需单元中的灵活性,但它降低了单个齿轮的动力传输。它必须使用大型内部变速箱。由于高压压缩机出口和燃烧室之间的可用空间很小,内部变速箱的位置很复杂。由于内部变速箱和径向驱动轴的安装(干扰气体流动)导致的热膨胀和发动机性能下降,在涡轮区域比压缩机区域产生更大的问题。对于任何给定的燃气涡轮发动机,涡轮面积小于压缩机面积,这使得将变速箱安装在压缩机物理提供的空间内更容易。径向驱动轴的主要用途是将驱动力从内部变速箱传输到外部变速箱。反之亦然,即将高启动扭矩从启动器传输到高压压缩机系统,以启动发动机。最好具有最小的驱动轴直径以减少气流中断。直径越小,轴必须旋转得越快才能产生相同的功率。但是,这种直径有一个限制,因为它会增加内部应力并增加更大的动态问题,从而导致振动。中间变速箱的使用取决于发动机结构的设计及其尺寸。当没有规定将径向轴直接连接到外部齿轮箱时,中间齿轮箱组装在内部齿轮箱和外部齿轮箱之间。外部齿轮箱为每个附件单元提供安装面,并由附件驱动器组成。外部齿轮箱的位置取决于几个因素。它包裹在发动机的低前部区域周围,以减少飞机飞行时的阻力效应,并且由于它位于下部,维护人员很容易接近。如果任何附件单元发生故障,停止旋转,则可能导致故障