摘要 在运动皮层中,任务相关的神经反应与无关信号纠缠在一起,这使编码和解码机制的研究变得复杂。目前尚不清楚任务无关信号是否可能隐藏一些关键真相。一种解决方案是准确地分离任务相关和无关信号,但由于任务相关信号的基本事实未知,这种方法仍然难以捉摸。因此,我们提出了一个框架来定义、提取和验证任务相关信号。通过分析执行不同伸手任务的三只猴子的分离信号,我们发现以前被认为无用的神经反应以复杂的非线性方式编码了丰富的任务信息。这些反应对于神经元冗余至关重要,并揭示了运动行为占据了比之前预期更高维的神经空间。令人惊讶的是,当结合经常被忽略的神经维度时,任务信息 24 可以像非线性解码一样准确地进行线性解码,这表明线性读出是在运动皮层中进行的。我们的研究结果提示,分离与任务相关的信号可能有助于发现更多隐藏的皮层机制。27
摘要 在运动皮层中,行为相关的神经反应与不相关的信号纠缠在一起,这给编码和解码机制的研究带来了复杂性。目前尚不清楚行为无关信号是否可能隐藏一些关键真相。一种解决方案是在单神经元和单次试验水平上准确分离行为相关和不相关信号,但由于行为相关信号的实际情况未知,这种方法仍然难以实现。因此,我们提出了一个框架来定义、提取和验证行为相关信号。通过分析三只执行不同伸手任务的猴子的分离信号,我们发现以前被认为包含很少信息的神经反应实际上以复杂的非线性方式编码了丰富的行为信息。这些反应对于神经元冗余至关重要,并揭示了运动行为占据了比以前预期更高维的神经空间。令人惊讶的是,当结合经常被忽略的神经维度时,行为相关信号可以线性解码,其性能与非线性解码相当,这表明线性读出可以在运动皮层中进行。我们的研究结果表明,分离行为相关信号可能有助于发现更多隐藏的皮层机制。
摘要 在运动皮层中,行为相关的神经反应与不相关的信号纠缠在一起,这使编码和解码机制的研究变得复杂。目前尚不清楚行为无关信号是否可能隐藏一些关键真相。一种解决方案是准确地分离行为相关和不相关的信号,但由于行为相关信号的实际情况未知,这种方法仍然难以捉摸。因此,我们提出了一个框架来定义、提取和验证行为相关信号。通过分析三只执行不同伸手任务的猴子的分离信号,我们发现以前被认为无用的神经反应以复杂的非线性方式编码了丰富的行为信息。这些反应对于神经元冗余至关重要,并揭示了运动行为占据了比之前预期更高维的神经空间。令人惊讶的是,当结合经常被忽略的神经维度时,行为信息的线性解码可以与非线性解码一样准确,这表明线性读出是在运动皮层中进行的。我们的研究结果提示,分离与行为相关的信号可能有助于发现更多隐藏的皮质机制。
摘要 在运动皮层中,行为相关的神经反应与不相关的信号纠缠在一起,这使编码和解码机制的研究变得复杂。目前尚不清楚行为无关信号是否可能隐藏一些关键真相。一种解决方案是准确地分离行为相关和不相关的信号,但由于行为相关信号的实际情况未知,这种方法仍然难以捉摸。因此,我们提出了一个框架来定义、提取和验证行为相关信号。通过分析三只执行不同伸手任务的猴子的分离信号,我们发现以前被认为无用的神经反应以复杂的非线性方式编码了丰富的行为信息。这些反应对于神经元冗余至关重要,并揭示了运动行为占据了比之前预期更高维的神经空间。令人惊讶的是,当结合经常被忽略的神经维度时,行为信息的线性解码可以与非线性解码一样准确,这表明线性读出是在运动皮层中进行的。我们的研究结果提示,分离与行为相关的信号可能有助于发现更多隐藏的皮质机制。
流行病可能是自然发生的疾病暴发,发生在地方、省、国家和国际层面。流行病可能是在生物医学诊断和研究中意外接触病原体(致病因子)、药物和生物制剂严重短缺或故意使用病原体或生物毒素(生物体产生的有毒物质)对人类、植物或动物造成伤害的结果。本计划的范围适用于主要问题是人类健康的情况,包括在环境中发现或在动物身上诊断出的可能传播给人类的生物因子(人畜共患病)。仅限于动物、植物或食品健康或安全的流行病不在本计划的范围内。
简介:药物,也称为药物或药品,是一种用于治疗、治愈、预防或诊断疾病或促进健康的化学物质。自古以来,世界上几乎所有古代文明都使用药物。考古学证据表明,即使在石器时代,人类也使用某些植物作为药用。第一种有记录的药物是鸦片。鸦片及其提取物主要用于止痛,但人们在长期使用中意识到了其有害的成瘾性。事实上,正确药物的最佳定义来自 Charak Samhita '药物是正确的,纯净的,可以治愈疾病 - 身体、精神和灵魂 - 并且不会引起不良反应,也不会引发其他疾病。'即使在二十一世纪,药物设计和开发也必须遵循医学之父希波克拉底 (公元前 460-355 年) 首次提出的最重要的公理“首先不要伤害”。
摘要:我们在实验中证明了在Sili-ConNanodisk阵列中对连续体(A-BICS)中意外结合状态的调整。A-BIC出现了多物的破坏性干扰,这些干扰是平面电偶极子和平面磁性偶极子,以及弱电四极杆和磁性四极杆。我们进一步表明,可以通过改变纳米风险尺寸或晶格周期来方便地调节A-BIC的光谱和角度位置。非常明显,角度可以调节到0°,这表明A-BIC从OFF-γ-BIC到AT-γ-BIC进行了有趣的过渡。我们的工作为具有高质量因素的光捕获提供了一种新的策略,可调节的A-BIC可以在低阈值激光,增强的非线性光学和光学传感中找到潜在的应用。