James Giordano博士是统一服务大学卫生科学大学国防医学伦理中心的咨询生物伦理学家。他是佩莱格里诺(Pellegrino)神经病学,生物化学和伦理学的中心教授;并在乔治敦大学医学中心担任军事医学伦理的子计划主席。是350多名同行评审出版物,9本书和52份政府报告的作者,他是电气和电子工程师研究所(IEEE)脑主席的名誉主席;是国防高级研究项目局(DARPA)神经,法律和社会问题顾问委员会的任命成员;以及美国卫生与公共服务部(DHHS)秘书人类研究保护咨询委员会任命的成员。欧洲科学与艺术学院的当选成员,以及皇家医学学会(英国)的海外院士,乔丹诺博士以前曾是一名指定的航空生理学家,曾在美国海军和海军陆战队任职。欧洲科学与艺术学院的当选成员,以及皇家医学学会(英国)的海外院士,乔丹诺博士以前曾是一名指定的航空生理学家,曾在美国海军和海军陆战队任职。
摘要是一种数字技术或更广泛的信息媒介,新媒体已经开始进入大众的生活,并以作品或广告的形式参与太空建设,从而影响人们的生活方式和太空的价值。这是一种新的信息传输方式,也是未来空间外观和开发的映射。自从城市的发展以来,设计师一直在不断探索创新的方式和体验太空建立过程中的方式,他们将注意力转向了信息传输的设计。在本文中,空间分别分为三类,分别显示了展览空间,公共空间和城市空间中的新媒体艺术案例,通过对这些案例的分析,讨论了新媒体设计的新媒体艺术的方式和可能性。通过对本文的研究,可以发现,作为设计方法的新媒体艺术驻扎在互联网空间中,该方法扩大了空间领域,有效地改变了人们与人,人,空间,空间和空间之间的关系,进一步提高了信息传播的效率和反馈。
由于细胞抑制剂的肿瘤浓度不足,阻碍了实体瘤的有效全身药物治疗,因此需要开发智能局部药物输送系统。为了克服这个问题,我们证明了用于骨肉瘤治疗的基础药物阿霉素 (DOX) 表现出对纳米 (nHA) 和微米 (mHA) 尺寸的羟基磷灰石 (HA) 的可逆性增生。用 DOX 功能化的 nHA 颗粒被吞没在骨肉瘤细胞的溶酶体中,其中酸性微环境导致 DOX 和 HA 之间的结合中断。释放的 DOX 随后积聚在线粒体中,导致细胞饥饿、迁移减少和细胞凋亡。HA + DOX 输送系统还在患有骨肉瘤的小鼠身上进行了体内测试。通过 PET-CT 和增殖和凋亡标志物的免疫组织化学染色可以看出,通过 HA 颗粒局部输送 DOX 比对照组具有更强的肿瘤根除效果。这些结果表明,除了全身化疗外,辅助 nHA 可用作 DOX 细胞内输送的载体,以预防骨肉瘤手术切除后的肿瘤复发。此外,我们证明 nHA 颗粒是这种方法的关键,但 nHA 与 mHA 的组合可以提高与颗粒纳米材料相关的安全性,同时保持相似的治疗潜力。
这项工作分析了沉积相和在河中部提取的沉积物见证人的有孔虫关联(S.O.)从中新世到全新世进行了该部门的古环境重建。 div>在更新世期间,强大的Ero siva相导致在上新世上和上新世上,先前沉积在海洋平台上的新材料。 div>随后,该区域被潮汐通道/内部泥泞的平原所占据,这是一种冲积的平原,与新的新形态的新重要侵蚀相吻合,这是My-1违法行为期间与新通道和潮汐平原的潮汐洪水,最后在过去2000年的高高和超大型Marsmas的实施中。 div>证人A的上部由20世纪末至21世纪初之间进行的拟人填充。 div>
摘要 骨量下降与衰老和骨质疏松症有关,骨质疏松症是一种以骨骼逐渐衰弱和骨折发生率增加为特征的疾病。骨骼的生长和终生稳态依赖于不同细胞类型之间的相互作用,包括血管细胞和间充质基质细胞 (MSCs)。由于这些相互作用涉及 Notch 信号传导,我们探索了用分泌的 Notch 配体蛋白治疗是否可以增强成年小鼠的成骨作用。我们发现,一种靶向骨的、高亲和力的配体 Delta-like 4,称为 Dll4 (E12) ,可诱导雄性小鼠的骨形成,而不会对其他器官造成不良影响,因为已知这些器官依赖于完整的 Notch 信号传导。由于骨表面较低,从而导致 Dll4 (E12) 的保留减少,同样的方法无法促进雌性和卵巢切除小鼠的成骨作用,但与甲状旁腺激素结合可大大增强小梁骨形成。基质细胞的单细胞分析表明,Dll4 (E12) 主要作用于 MSC,对成骨细胞、内皮细胞或软骨细胞的影响相对较小。我们认为,通过骨靶向融合蛋白激活 Notch 信号可能具有治疗作用,并且可以避免对其他器官中 Notch 依赖性过程产生有害影响。
炎症伴坏死(n=23,第 2 组)和弥漫性炎性浸润伴多灶性坏死(经典心肌炎,n=20,第 3 组)。其他潜在死亡原因包括肺炎、癫痫症、结节病、癌症和心脏病。结果:第 3 组的平均年龄(24 ± 18 岁)明显低于第 1 组和第 2 组。各组间性别差异不显著(总计 27 名女性,40 名男性)。第 3 组的平均心脏重量最低(330 克)(p=0.09)。平均浸润范围(p=0.02)和心肌细胞坏死程度(p=0.05)与其他潜在死亡原因的存在呈负相关。嗜酸性粒细胞见于 21 例(31%),且在第 1 组中最为常见,尽管第 3 组中有 7 例嗜酸性粒细胞(坏死性嗜酸性心肌炎)。在其他病例中,淋巴细胞(n=22)、巨噬细胞(n=12)和中性粒细胞(n=12)是主要细胞类型,第 3 组中分别为 9、3 和 1 例。药物暴露率和主要细胞类型(总体 58%)没有显著差异,尽管淋巴细胞性心肌炎最常与抗生素使用有关,中性粒细胞与抗精神病药物使用有关。结论:我们得出结论,在没有其他潜在原因的情况下,猝死的浸润和心肌细胞坏死程度最大。弥漫性坏死性嗜酸性心肌炎在弥漫性心肌炎中所占的比例出乎意料地高,但通常与特定的药物病因无关。
细胞内氧化应激,特别是通过活性氧 (ROS),在牵张成骨 (DO) 过程中的骨骼重塑中起着关键作用,DO 是一种广泛用于骨骼修复和再生的骨科技术。本研究旨在阐明 ROS 在促进骨形成和骨吸收方面的双重作用,重点研究其对成骨细胞和破骨细胞活动的影响。利用体外和体内模型,我们测量了 DO 不同阶段(潜伏期、牵张和巩固)的 ROS 水平,并分析了它们对细胞功能和信号通路的影响。结果表明,牵张阶段的中等 ROS 水平可增强成骨细胞分化和骨矿化,而过度的氧化应激则促进破骨细胞活动和骨吸收。组织学和生化分析表明,ROS 不仅影响 Wnt/β-catenin 和 NF- κB 通路,而且还与炎症和血管生成过程相互作用,进一步影响骨愈合结果。这些发现强调了维持最佳 ROS 平衡以最大程度提高治疗效果和减少 DO 并发症的重要性。此外,该研究还强调了抗氧化剂疗法调节 ROS 水平的潜力,为改善骨再生的临床结果提供了新策略。这项研究弥补了对骨生物学氧化应激理解的关键空白,并为有针对性的干预措施以增强骨骼愈合铺平了道路。