β-thal无血症是最常见的遗传疾病,其特征是降低或不存在β-珠蛋白链合成和血红蛋白A产量(1-3)。据报道,估计全球人口的1.5%为β-丘脑贫血携带者(4)。 在来自非洲国家,印度次大陆,地中海,中东和东南亚的个人或祖先的个人中最常见(1-6)。 近年来,欧洲和北美β地中海贫血的流行率一直在上升,这在很大程度上归因于移民模式(7)。 β-thal核酸可以根据对输血的依赖水平(8),分为非转化依赖性thalassya(NTDT)和依赖性依赖性丘脑(TDT)(TDT)。 根据一项为期10年的回顾性队列研究,英格兰TDT的死亡率为6.2%,显着高于一般人群的年龄/性别调整的死亡率1.2%(9)。 在输血依赖性的β-丘脑贫血患者中,心肌铁超负荷的发生率从早期研究中的11.4% - 15.1%增加到最近的研究中的26.1% - 36.7%(10,11)。 这可能是由于生存率增加,导致合并症率更高(12,13)。 心血管疾病仍然是β-心理症患者死亡的主要原因,而铁超负荷仍然是一个显着的挑战(14)。 两种机制负责β-丘脑中的铁超载:由于无效的红细胞生成和输血而导致铁吸收增加(15)。 TDT患者接受输血,等于平均每日摄入据报道,估计全球人口的1.5%为β-丘脑贫血携带者(4)。在来自非洲国家,印度次大陆,地中海,中东和东南亚的个人或祖先的个人中最常见(1-6)。近年来,欧洲和北美β地中海贫血的流行率一直在上升,这在很大程度上归因于移民模式(7)。β-thal核酸可以根据对输血的依赖水平(8),分为非转化依赖性thalassya(NTDT)和依赖性依赖性丘脑(TDT)(TDT)。根据一项为期10年的回顾性队列研究,英格兰TDT的死亡率为6.2%,显着高于一般人群的年龄/性别调整的死亡率1.2%(9)。在输血依赖性的β-丘脑贫血患者中,心肌铁超负荷的发生率从早期研究中的11.4% - 15.1%增加到最近的研究中的26.1% - 36.7%(10,11)。这可能是由于生存率增加,导致合并症率更高(12,13)。心血管疾病仍然是β-心理症患者死亡的主要原因,而铁超负荷仍然是一个显着的挑战(14)。两种机制负责β-丘脑中的铁超载:由于无效的红细胞生成和输血而导致铁吸收增加(15)。TDT患者接受输血,等于平均每日摄入由于无效的红细胞产生,NTDT患者患有贫血和缺氧,从而抑制了肝素表达,从而促进了肠中铁的吸收(16,17)。此外,低水平的肝素会导致转铁蛋白的上调,从而进一步促进巨噬细胞过度释放铁(18)。
摘要:铁铁作用是一种受铁依赖性脂质过氧化调节的细胞死亡方式。生长的证据表明,铁铁作用诱导是一种新型的抗癌形态,可能会在癌症中克服耐药性。涉及螺旋病调节的分子机制是复杂的,并且高度依赖于上下文。因此,对于实施这种独特的细胞死亡模式以靶向单个癌症是必要的,对每种肿瘤类型中其执行和保护机制的全面理解是必要的。由于当前大多数关于铁吞作用调节机制的证据是基于良好的癌症研究,因此在很大程度上缺乏有关白血病的铁铁病的知识。在这篇综述中,我们总结了有关磷脂和铁的代谢以及保护细胞免受溢铁毒剂的主要抗氧化途径的当前理解。我们还强调了p53(细胞死亡和细胞代谢过程的主要调节剂)对铁吞作用的调控的多样化影响。最后,我们讨论了白血病的最近的铁铁病研究,并为发展有希望的抗白血病疗法提供了实施铁铁作用诱导的未来观点。
铁电体 (FE) 具有自发和可切换的电极化,不仅在基础科学领域,而且在器件应用领域都具有重要意义。传统的铁电性,例如钙钛矿氧化物 BaTiO 3 中的铁电性,归因于 Ti d 0 和氧 p 态之间的 pd 杂化,其中长程库仑力优于短程排斥力 [1]。结果,BaTiO 3 中 Ti 偏心位移被诱导,从而破坏了中心对称性。在钙钛矿超晶格如ABO3/A'BO3和层状钙钛矿(ABO3)2(AO)[2-4]中发现的“混合不当”铁电性具有不同的起源,它源于A位上的极性模式与BO6八面体的两个非极性倾斜模式之间的三线性耦合。该机制更多地依赖于晶格的几何形状(即不同层上A阳离子的反极性位移之间的非完全补偿),而不是像传统FE那样依赖于静电力[5,6]。已经提出了不同的方法来操纵铁电性。施加在薄膜上的应变可以影响BaTiO3的电极化,也可以使量子顺电的SrTiO3变为铁电体,甚至提高其转变温度[7,8]。电荷掺杂已被证明是调节铁电性和创造新相的另一种有效方式。在传统铁电材料如 LiNbO 3 和 BaTiO 3 中,可以通过增加掺杂载流子的数量来抑制铁电位移 [9–12]。而在层状钙钛矿的三线性 Ruddlesden-Popper 相中,最近的一项研究表明,在 A 3 Sn 2 O 7 中静电掺杂会导致八面体旋转增加 [13],从而增强极化。由于载流子可以屏蔽长程相互作用并倾向于保持中心对称性,因此铁电性与金属性共存是违反直觉的。这种不寻常的共存直到 2013 年才被发现,当时 LiOsO 3 被认定为第一个“极性金属” [14] − 比它的理论预测晚了六十年 [15]。最近的研究表明,二维拓扑半金属WTe 2 也表现出可切换的极化[16]。
摘要人类铁稳态的一种中心调节机制涉及铁蛋白(FPN),唯一的细胞铁出口剂和肽激素肝激素,它抑制了Fe 2+ trans- trans-并诱导FPN的内在化和降解。FPN/肝素轴的失调导致病理条件的不同,因此,抑制FPN介导的铁运输的药理学化合物具有很高的临床意义。 在这里,我们描述了与合成纳米型和Vamifeport(VIT-2763)的复合物中人类FPN的低温微拷贝结构,这是第一个临床阶段的口服FPN抑制剂。 vamifeport与肝素竞争FPN结合,目前正处于β-丘脑和镰状细胞病的临床发展中。 结构显示了FPN的两个不同构象,代表了转运蛋白的向外和遮挡状态。 vamifeport位点位于蛋白质的中心,在该蛋白质中,与肝素相互作用的重叠基于两个分子之间的竞争关系。 在Vamifeport的结合袋中引入点突变会降低其与FPN的亲和力,强调结构数据的相关性。 一起,我们的研究揭示了FPN的构象重排,这与运输具有潜在相关性,并且它提供了对这种独特的铁外乘转运蛋白的药理靶向的初步见解。导致病理条件的不同,因此,抑制FPN介导的铁运输的药理学化合物具有很高的临床意义。在这里,我们描述了与合成纳米型和Vamifeport(VIT-2763)的复合物中人类FPN的低温微拷贝结构,这是第一个临床阶段的口服FPN抑制剂。vamifeport与肝素竞争FPN结合,目前正处于β-丘脑和镰状细胞病的临床发展中。结构显示了FPN的两个不同构象,代表了转运蛋白的向外和遮挡状态。vamifeport位点位于蛋白质的中心,在该蛋白质中,与肝素相互作用的重叠基于两个分子之间的竞争关系。在Vamifeport的结合袋中引入点突变会降低其与FPN的亲和力,强调结构数据的相关性。一起,我们的研究揭示了FPN的构象重排,这与运输具有潜在相关性,并且它提供了对这种独特的铁外乘转运蛋白的药理靶向的初步见解。
铁死亡是一种新型的细胞死亡方式,以铁依赖性的脂质过氧化为特征,涉及铁代谢、脂质代谢和氧化应激等多种生物学过程。越来越多的研究表明铁死亡与癌症和神经退行性疾病有关,如胶质母细胞瘤、阿尔茨海默病、帕金森病和中风等。基于这些发现,我们可以选择性地诱导铁死亡来治疗某些癌症,或者通过抑制铁死亡来治疗神经退行性疾病。本文综述了铁死亡的相关进展、铁死亡的调控机制、铁死亡在脑肿瘤和神经退行性疾病中的参与以及相应的药物疗法,旨在为其治疗提供新的潜在靶点。
在地质研究中,人们采用多种方法来勘探自然资源。大面积研究时会使用飞机、直升机和无人机 ( 无人驾驶飞机 ) 。研究中采用重力、电磁和磁力方法。重力法可以测量地球重力的微小变化 [1]。现代重力仪的灵敏度小于 1 mGal (1 Gal = 10 −2 m/s 2 )。重力仪可以测量接近 10 −6 g 水平的地球重力变化。莫斯科的 Gravimetric Technologies Ltd. 公司是少数几家领先的高灵敏度重力仪制造商之一 [2]。安装在 Cessna 404 飞机上的 GT-1A 重力仪如图 1 所示 [3]。自然资源矿床也是通过应用电磁法发现的。第一个电磁系统出现并开发于 20 世纪 20 年代的斯堪的纳维亚半岛、美国和加拿大。电磁法用于测量土壤的电导率。电磁系统安装在飞机或直升机上。大型线圈由直升机牵引或由飞机携带。线圈中的电流脉冲产生强磁场(一次磁场),该磁场穿透地球各层(图 2)。随时间变化的磁场在土壤中产生涡流。关闭线圈中的电流后,只有涡流产生磁场(二次磁场)
在地质研究中,人们采用多种方法来发现自然资源。在大面积研究中,人们使用飞机、直升机和无人机 (Un nm Anned V ehicle)。重力、电磁和磁力方法都用于研究。在重力方法中,可以测量地球重力的极小变化 [1]。现代重力仪的灵敏度小于 1 mGal (1 Gal = 10 −2 m/s 2 )。重力仪可以测量接近 10 −6 g 水平的地球重力变化。 莫斯科的 Gravimetric Technologies Ltd. 公司是少数几家领先的超灵敏重力仪生产商之一 [2]。图 1 [3] 显示了安装在 Cessna 404 飞机上的 GT-1A 重力仪。应用电磁法也可以发现自然资源矿藏。第一个电磁系统出现并于 20 世纪 20 年代在斯堪的纳维亚半岛、美国和加拿大开发。电磁法用于测量土壤的电导率。电磁系统安装在飞机或直升机上。大线圈由直升机牵引或由飞机携带。线圈中的电流脉冲产生强磁场(初级场),该磁场穿透地球各层(图2)。时变场在土壤中产生涡流。线圈电流切断后,只剩下产生磁场的涡流(二次
摘要。校园内具有开环地热系统流出流的新建筑物为学生驱动的环境化学课程提供了有力的背景。在不到一年的时间里,沿溪流前端的岩石已经开始变成橙色(Rusty),这已成为学生中的好奇心。结果,通过沿流的原子吸收光谱法监测铁和钙浓度,以研究金属沉积过程。沿流沿流中的岩石,流中铁和钙浓度的氧化铁沉积沿流。正如预期的那样,河流和钙的浓度下降了溪流,较小的装饰瀑布后,浓度下降的浓度特别较大。沉积在岩石上的氧化铁的浓度也以与河流溶解的铁下降相似的速度下降,这强烈表明岩石上的沉积是去除铁的主要模式。在运行不到一年的时间里,铁和钙的浓度在进入溪流后立即开始下降,表明该流的前端尚未饱和。环境化学课程计划在随后的几年中重复这些研究,以监视/何时何时饱和,并且沉积过程开始向下游移动。
在地质研究中,人们采用多种方法来发现自然资源。在大面积研究中,人们使用飞机、直升机和无人机 (Un nm Anned V ehicle)。重力、电磁和磁力方法都用于研究。在重力方法中,可以测量地球重力的极小变化 [1]。现代重力仪的灵敏度小于 1 mGal (1 Gal = 10 −2 m/s 2 )。重力仪可以测量接近 10 −6 g 水平的地球重力变化。 莫斯科的 Gravimetric Technologies Ltd. 公司是少数几家领先的超灵敏重力仪生产商之一 [2]。图 1 [3] 显示了安装在 Cessna 404 飞机上的 GT-1A 重力仪。应用电磁法也可以发现自然资源矿藏。第一个电磁系统出现并于 20 世纪 20 年代在斯堪的纳维亚半岛、美国和加拿大开发。电磁法用于测量土壤的电导率。电磁系统安装在飞机或直升机上。大线圈由直升机牵引或由飞机携带。线圈中的电流脉冲产生强磁场(初级场),该磁场穿透地球各层(图2)。时变场在土壤中产生涡流。线圈电流切断后,只剩下产生磁场的涡流(二次