团队 1,“心脏代谢疾病中的器官间串扰”,使用动物模型和人类转化研究方法研究心脏代谢疾病中的器官间串扰,重点关注肝脏、心脏和肠道,以及核受体作为治疗靶点(PPARs、FXR、Rev-erb α、ROR α)的功能。团队 2,“心脏病、血流障碍和止血”,使用不同的转化方法/队列和动物模型研究血流障碍(左心室辅助装置、体外膜氧合(ECMO))和心脏瓣膜钙化的主要途径及其对血液元素的影响。团队 3,“肥胖及其合并症中的免疫代谢串扰”,研究生理和病理条件下免疫系统和代谢之间的交叉调节机制,重点关注炎症和代谢疾病及其心血管并发症。团队 4,“肝脏疾病中基因表达的综合分子分析”研究控制肝脏病理生理学中基因表达的机制,旨在揭示新的调节途径并完善我们对核受体作为药理学靶点的认识。团队 5,“昼夜节律生物学中的核受体”,研究生物钟在几种(病理)生理学背景下影响代谢和炎症的细胞和分子机制,并评估使用核受体和时钟成分 Rev-erb 和视黄酸受体相关孤儿受体 (ROR) 作为治疗靶点来预防/治疗与时钟紊乱相关的病理生理状况。
对于NISQ超导量子计算机来说,量子比特映射对于保真度和资源利用率至关重要。现有的量子比特映射方案面临诸如串扰、SWAP开销、设备拓扑多样等挑战,导致量子比特资源利用不足和计算结果保真度较低。本文介绍了一种解决这些挑战的新型量子比特映射方案QuCloud+。QuCloud+有几项新的设计。(1)QuCloud+支持2D/3D拓扑量子芯片上的单/多程序量子计算。(2)QuCloud+利用串扰感知社区检测技术对并发量子程序的物理量子比特进行分区,并进一步根据量子比特度数分配量子比特,提高保真度和资源利用率。(3)QuCloud+包含X-SWAP机制,可避免串扰误差较大的SWAP,并支持程序间SWAP以降低SWAP开销。 (4) QuCloud+根据最佳实践的保真度估计来调度要映射和执行的并发量子程序。实验结果表明,与现有的典型多道程序研究[12]相比,QuCloud+可实现高达9.03%的保真度提升,并节省映射过程中所需的SWAP,减少插入的CNOT门数量40.92%。与最近的一项研究[30]相比,该研究通过映射后门优化进一步减少门数量,在使用相似门数量的情况下,QuCloud+将映射后的电路深度减少了21.91%。
光学显微镜是生物学中最强大的工具之一。能够在广泛的尺度上可视化生命结构和事件的能力导致了基础发现。同时,为了更有效地研究活体组织,需要克服一些限制。例如,在传统显微镜中,样品要么在整个成像场上同时被照亮(宽视野照明),要么逐个像素依次被照亮(点扫描照明)。宽视野方法可以高速成像,因为它使用相机一次捕获二维图像,但它会受到光散射产生的像素串扰的影响。在点扫描方法中,单个像素检测器捕获荧光信号并逐个像素构建图像;当使用双光子激发时,它会大大减少光散射的串扰。但是,虽然双光子显微镜适合对散射组织深处进行成像,但作为一种点扫描方法,其成像速度较慢。
摘要。铜互连尺寸的减小会降低其性能,因为表面散射增加,从而显著缩短了有效电子平均自由程。与 Cu 不同,CNT 支持弹道电子流,平均自由程值较低,这极大地诱使研究人员用碳纳米管代替铜。因此,本文提出了一种基于有限差分法的精确方法,描述碳纳米管互连在时间域中的行为。所提出的算法在 MATLAB 工具中实现。研究了互连之间的串扰和引起的延迟与其长度和技术节点(45nm、32nm、22nm 和 16nm)的关系。将所提出的方法得到的值与 PSPICE 仿真工具得到的值进行了比较。这些结果之间具有很好的一致性,表明 CNT 互连在串扰引起的延迟方面比铜互连更有效。
摘要输入物联网(IoT)和第五代(5G)移动网络的时代,对紧凑,成本效益和高音传感器和执行器的需求飙升。光学技术作为对常规电气技术的补充,为构造广泛应用的传感器和执行器提供了一种多功能平台,显示了高数据速率,强大的多重能力,快速响应,低串扰,低串扰以及对电磁干扰的免疫力的优势。在本文中,我们对光学传感和驱动技术的开发过程进行了全面综述。在光学检测器,光传感器(进一步分为物理和化学/生物传感器)中的应用以及光学通信/计算/成像。对于每个应用程序的每个类别,都遵循从光学微电体式系统(MEMS)和纳米光子学到光子纳米系统的技术演变趋势引入进度。还提出了光学传感/致动技术的未来开发方向。
• 本配置文件中显示的业绩结果可能包括加入该策略的摩根士丹利账户的综合数据。这些结果在配置文件的投资结果和投资组合季度回报部分中未加阴影,并带有 Select UMA 标签。 • 结果还显示了在 Select UMA 计划中启动该策略之前,管理人自己投资于其投资策略版本的账户的综合数据。这些结果以灰色阴影显示并标记为管理人。虽然这一业绩很重要,但它并未反映摩根士丹利在实施该策略方面所扮演的角色,该角色反映在配置文件的投资结果和投资组合季度回报部分的未加阴影部分中。摩根士丹利与管理人合作,向其客户提供该策略。因此,在过渡月之后,摩根士丹利不会显示管理人自己投资于其投资策略版本的账户的综合数据。因此,管理人的结果和策略的结果可能会有所不同,如下文进一步讨论的那样。 • 如果经理的业绩和策略的业绩之间的过渡月份出现在某个季度的中间,则该季度或年份将在概况的“投资业绩”和“投资组合季度回报”部分中以蓝色标出,并标有“过渡”字样。
Z串扰是由于低频Z偏置信号未完全定位于单个量子的事实。每个量子位的单个Z偏置信号在整个芯片上具有空间分布,但是强度随量子位的距离而衰减。假设j -th Qubit q j的z脉冲振幅(ZPA)是z j,并且其z控制线与i -th Qubbit q I是r i,j之间的垂直距离,那么q j的z线感觉到Q i的磁感应强度可以表示为q j的z线,如b i←b i←j j j / r i i←j j j j / r i,j,j。因此,相应的串扰通量为φi←j = b i←j i = c i←j z j J,其中s i表示q i的squid和c i←j s i / r i,j表示每单位zpa的通量crosstalk。为了补偿串扰φI←J,我们在Q i的Z线上应用φi←i = c i←i out z i z i i i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←
虽然具有长相干时间的数据量子比特对于量子信息的存储至关重要,但辅助量子比特对于容错量子计算的量子纠错 (QEC) 至关重要。光镊阵列的最新发展,例如大规模量子比特阵列的制备和高保真门操作,为实现 QEC 协议提供了潜力,而下一个重要挑战之一是控制和检测辅助量子比特,同时尽量减少原子损失和串扰。在这里,我们介绍了由双同位素镱 (Yb) 原子阵列组成的混合系统的实现,其中我们可以利用费米子 171 Yb 的核自旋量子比特作为数据量子比特,利用玻色子 174 Yb 的光时钟量子比特作为辅助量子比特,具有无损量子比特读出能力。我们评估了量子比特之间的串扰对 174 Yb 成像光的核自旋量子比特相干性的影响。对于 174 Yb 的 Hahn 回波序列,使用 399 nm 探针和 556 nm 冷却光束,我们观察到在 20 ms 曝光下保留了 99.1 (1.8)% 的相干性,产生了 0.9992 的鉴别保真度和 0.988 的生存概率。使用 556 nm 探测光束的 Ramsey 序列对相干性的影响可以忽略不计,这表明未来低串扰测量可能会有所改善。这一结果凸显了混合 Yb 原子阵列在基于辅助量子比特的 QEC 协议的中路测量中的潜力。
摘要:乳腺癌(BC),具有雌激素受体(ER)和/或孕酮受体(PR)蛋白的表达,并具有人类表皮生长因子受体2(HER2)的过表达/扩增,称为激素受体受体阳性(HR +)/HER2 + BC,代表了所有BC的〜10%bc的〜10%。hr + /her2 + bc包括ER +,PR +或ER +和PR +(三阳性BC)的HER2 + BC。尽管当前的指南 - 建议对抗HEH2单克隆抗体和化学疗法的治疗组合是对许多HER2 +晚期疾病,HR + /HER2 +亚型内肿瘤内异质性的有效一线治疗HR + /HER2 + BC患者的临床试验。此外,已发布的数据表明,HRS和HER2之间的串扰可以导致治疗性。双重HR和HER2途径靶向靶向是对由HER2和HR驱动的肿瘤患者有效且耐受性良好的治疗方法的合理方法,因为这可能会通过阻止受体途径串扰来阻止耐药性的发展。但是,此类方法的临床试验数据受到限制。治疗以减弱与受体串扰有关的其他信号通路的处理,也正在研究中纳入双重受体靶向方案。在此,我们将回顾针对HR2和ER的联合受体阻滞的科学和临床原理,用于晚期HR + /HER2 +疾病的患者。These include cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, based on the rationale that association of CDK4/6 with cyclin D1 may play a role in resistance to HER2-directed therapies, and others such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (MTOR)途径抑制剂。