在强相关系统中,微观理解竞争订单是现代量子多体物理学的关键挑战。例如,条纹顺序的起源及其与Fermi-Hubbard模型中的配对的关系仍然是中心问题之一,并且可以帮助理解库酸酯中高温超导性的起源。在这里,我们分析了T-J模型的掺杂的混合二维(混合)变体中的条纹形成,其中荷载载流子仅限于一个方向移动,而磁性SU(2)相互作用是二维的。在有限温度下,使用密度矩阵重新归一化组,在没有配对的情况下,我们发现了稳定的垂直条带相,以不优量的磁序和远距离电荷密度的波浪pro纤维纤维纤维在广泛的掺杂范围内。我们在磁耦合〜J / 2的阶面找到高临界温度,因此在电流量子模拟器的范围内。多体状态的快照,可以通过量子模拟器访问,在混合设置中揭示了隐藏的自旋相关性,当考虑纯粹的磁背景时,抗Fiferromagnetic相关性会增强。所提出的模型可以看作是实现条纹阶段的父级哈密顿量,其隐藏的旋转相关性导致预测的对量子和热闪光的弹性。
在追求超导性的较高临界温度时,在两个维度(2D)中的电子带和范霍夫奇异性(2D)中已成为一种潜在的方法,以增强库珀配对。然而,这些特殊的电子特征抑制了超级流体的超导系统中的超级流体施工,因此在二维超导系统中的过渡(BKT)过渡,导致出现了由于超导导性引起的超导电性流量引起的显着pseudogap法律。在强耦合方案中,发现超流动性的一个与超导差距成反比,这是有助于强烈抑制超级抑制超级流动性的因子。在这里,我们揭示了上述限制在2D超导电子系统中避免使用具有较弱的电子配对强度的深层配对强度与深层带相结合的电子带。由于多播的影响,我们演示了一种类似筛选的机制,该机制绕过了抑制超级流体的抑制。我们报告了通过对两个频率启示元之间的映射耦合调谐和成对的交换耦合,报告了BKT过渡温度大量增强的最佳条件,并大量增强了伪制度。
摘要我们报告了一种新型材料的超导性能:鼻红细胞膜。从X≈3.8探索了Re X Lu Binary的不同组成,以接近纯Re化学计量。根据电子色散光谱结果,获得了x≈10.5的最高临界温度,最高为tc≈7k。取决于沉积条件,可获得多晶或无定形膜,这两种膜对于实际使用而言都很有趣。使用放牧X射线衍射测定法鉴定出多晶相的晶体结构为非中心对称超导体。超导特性在电阻和磁性上都被表征。磁倍率和AC/DC敏感性测量值使我们能够确定这些膜的H C 1和H C 2,以及估计相干长度ξ(0)和磁穿透深度λL(0)。我们还提供有关这些膜表面形态的信息。在该材料中的超导性证明证明了Lu在周期元素表的6周期中扮演3组过渡金属的角色的观点。然后,类似于re – nb,re – ti,re – hf和re – zr,人们可以期望结晶re – lu也打破了时间反转的对称性。如果未来的实验证明了这一点,结合了非中心对称特征,这些膜可用于形成非偏置电流设备,例如超导二极管,而无需外部磁场。
二维Terahertz光谱(2DTS)是一种核磁共振的Terahertz类似物,是一种新技术,旨在解决复杂的凝结物质系统中的许多开放问题。常规的理论框架普遍用来解释离散量子水平系统的多维光谱,但是对于紧密相关的材料中的集体激发的连续性是不足的。在这里,我们为模型集体激发的2DT(即分层超导体中的Josephson等离子体共振)开发了一个理论。从远低于超导相变的温度下的均值轨道方法开始,我们获得了多维非线性响应的表达式,这些反应适合于从常规的单模式场景中得出的直觉。然后,我们考虑在超导临界温度t c附近的温度,其中超出均值字段的动力学变得重要,并且常规直觉失败。随着t c接近t c的浮动增殖,对非线性响应的主要贡献来自反向传播的约瑟夫森等离子体的光学参数驱动器,该驱动器与均值范围的预测质量不同。与此相比,与一维光谱技术相比,例如第三次谐波产生,2DTS可用于直接探测热激发的有限摩肌等离子体及其相互作用。我们的理论很容易在丘比特中进行测试,我们讨论了约瑟夫森等离子体的当前背景以外的含义。
Mott绝缘子(MI)是密切相关的量子构造中最显着的范式阶段之一[1-3]。当与强电子排斥相关的相关效应驱动金属 - 绝缘体相变[4]时,它会出现在凝结的系统中。MI表征了广泛的材料[5-10],并且与外来量子现象(例如高临界温度超导性[11],分数量子霍尔效应[12,13]和拓扑相位循环[14]。MIS由于隧道和排斥作用之间的竞争而出现在骨髓晶格模型中[15]。在光学晶格中使用超低原子进行的实验可以在广泛的模型中对多体物理学进行深入研究[16-19],并证明对Bose [15,20,21]和Fermi [22,23]系统的直接观察和表征的直接观察和表征,在三层和后来的系统中,也是下层系统的[24] [24] [24] [24]。值得注意的是,对于具有足够强的排斥相互作用的一维(1D)骨系统,具有任意小振幅的纯粹周期性潜力可以稳定莫特相[31 - 35],如参考文献中的实验确认。[36,37]。最近,两个周期性的晶格具有不稳定的空间时期,已引起了很多关注。这种准二元诱导的疾病
CO 2 -羽状地热 (CPG) 技术是一种地热发电系统,它使用地质储存的 CO 2 作为地下热提取流体来产生可再生能源。CPG 技术可以通过提供可调度电力来支持可变风能和太阳能技术,而灵活 CPG (CPG-F) 设施可以同时提供可调度电力、能量存储或两者。我们提出了第一项研究,研究 CPG 发电厂和 CPG-F 设施如何通过将工厂级发电厂模型与系统级优化模型相结合,作为可再生重度电力系统的一部分运行。我们以美国北达科他州为例,展示 CPG 将地热资源基础扩展到通常不考虑地热发电的地点的潜力。我们发现,太阳-风能-CPG 模型的最佳系统容量可以比峰值需求高出 20 倍。CPG-F 设施可以通过在季节性和短期时间范围内提供能量存储,将这种模拟系统容量降低到峰值需求的 2 倍多一点。 CPG-F 设施的运营灵活性进一步提高了 CPG 发电厂的环境空气温度限制,通过在临界温度下储存能量。在所有情况下,需要对二氧化碳排放征收每吨数百美元的税,才能在经济上证明使用可再生能源而不是天然气发电厂是合理的。我们的研究结果表明,CPG 和 CPG-F 技术可能在未来的可再生重电系统中发挥宝贵作用,我们提出了一些建议,以进一步研究其整合潜力。
为了您的方便,我会重复一些事情。因此,在一定温度以下的耐药性突然下降称为“超导现象”,或者这会引起超导性。在电阻消失的温度中称为a,“临界温度”,这是特定材料的特性。以及TC,对于常规超导体,超导过渡温度通常为少数开尔文的顺序。现在,我们昨天讨论了这一点,有一些非常规超导体,也称为“高温超导体”。,并且对它们的广泛知识没有传统的知识。但是,TC的确从几个开尔文到大约23 kelvin,因为这是针对NB3 GE的。和功能是; I-零电阻或电阻率,ii -ii -no晶体结构的变化,这是通过X射线衍射来验证的。在TC下方和TC上方下方。处于正常状态和超导状态。和第三,是,它的状态是超级传导状态的特征是,(a)电导率为有限的,(b)当前密度仍然是有限的,(c)是,电场为零,(d)是磁场是恒定的。,这不能由经典的电动动力学来解释。因为,欧姆定律说,j等于sigma e,j为有限,j是当前的密度,j是有限的,sigma必须去,sigma倾向于无穷大,而e必须等于零,零。所以这是第三个,这是(c)条件。以及E等于e等于,减去del b,del t,使您b到b常数,这是数字d。因此,这些是超级传导状态的一些特征。
纸,我们表明,这两种数量实际上存在固有的上限,这取决于金属相对于电子晶体相互作用的稳定性。我们将结果与实验数据进行了比较,并认为室温超导性完全是现实的,但仅在富含氢的化合物中。问题:“最大可能的超导t c?”自从1911年在Onnes发现超导性以来,尽管在这一领域取得了显着进展[7-12],但仍未得到答复。同时,在大气压力下,实际材料的T C在超过一百年(1911-2011)的实验经验中,在大气压力(大气压力上)的T C不超过133 k,而在高架压力(约30 GPA)处的T C不超过160 K。据信金属氢是具有最高临界温度之一的超导体[13,14]。这是因为T C与晶格振动频率成正比,在该材料中,由于氢是最轻的元素,因此在该材料中最高。不幸的是,产生金属氢需要超过450 GPA的压力[15,16],在当前实验技术的范围内进行运输测量。但是,有一种巧妙的溶液 - 将氢气与其他元素合金[17]。这提供了有效的化学压力,从而减少了产生稳定金属所需的外部压力。确实,压缩多氢化物成为自2014年和2018年发现记录超导以来的最高t C的领导者。
在硫化氢H 3 s中发现超导性(MB)的超导性,然后在金属多氢液中发现,从二元,lah 10等开始,并以三元的结尾,包括(la,y)h 10,彻底改变了凝聚态物理学领域。这些发现增强了解决在室温下产生超导材料的百年历史问题的希望。在过去5年在MB压力下进行的实验中,除了合成Hy-Dive本身之外,还使用光学,X射线和Mossbauer光谱研究了它们的物理特性,以及电磁性测量技术。本文提出了狂热研究的主要结果,包括高静态(最多21 t)和脉冲(最高70 t)磁场的测量。在低于临界T C值的温度下,电阻的测量值降至消失的水平,随着磁场的增加以及磁性筛选,临界温度t c的降低,表明多氢化物的超导状态。同位素效应的测量结果,以及磁杂质对t c的影响,表明电子配对的电子波机理。然而,在超导和正常状态中,多水中的电子电子相关性绝不是很小的。这可能正是尚未收到令人满意的解释的多氢化物的异常特性,例如第二个临界场h c 2(t)的线性温度依赖性,电阻ρ(t)的线性依赖性,线性磁心敏感的线性依赖性,与P. l. kapitza的线性磁势相似,与P. L. kapitza的发现非常相似。
fermionic系统的简化平均场描述依赖于Hartree-Fock-Bogoliubov(HFB)方法,其中两个粒子的相互作用分解为三个不同的通道。这种方法的一个主要问题是,通道之间的分离有些任意。根据要描述的身体状况,不同的渠道很重要。在此海报中,我们提出了一种自称为普遍的平均场理论,该理论基于为每个通道引入一个单独的加权因子。这个Ansatz通过为其最佳分区提供极端原理来消除渠道分离的任意性。通过考虑两个与接触相互作用的未偏光效率物种的示例来说明我们技术的力量。在这种情况下,Fock的贡献消失了,我们获得了Hartree和Bogoliubov通道之间的耦合。这仅在均值场上已经超出平均场校正[1,2],但也会在平均场上降低粒子孔波动的定性一致性的临界温度[3]。由于通道耦合的非扰动性质,我们还获得了仅在一个通道中任何波动理论捕获的结果。这需要引入有效的相互作用范围作为新的长度尺度,并且应该与足够大的密度相关。我们的形式主义在超低原子气体中的费米子超流量与凝结物理学的超导性以及核和中子物质领域之间建立了自然的理论桥梁。