三个备用控制系统通道的每个轴上的积分器提供电子配平、均衡和同步。当主通道接通时,备用控制系统伺服命令与这些积分器的主伺服命令同步。这些输入到备用控制系统表决器中,即使控制传感器输出和系统间控制规则存在差异,它们仍会跟踪主通道伺服命令。在从主控制系统切换到备用控制系统期间,必须将备用控制系统与主控制系统持续同步,以尽量减少控制面瞬变。如果主系统发生故障或飞行员命令脱离,就会发生切换。同步网络的带宽约为 2.5 赫兹
隧道掘进机 (TBM) Lady Eileen Hudson 已经到达发电站综合楼的北侧,距离终点还有不到 200 米,正在稳步向主通道隧道 (MAT) 终点线前进。隧道掘进完成后,TBM 将被部分拆卸并从 MAT 中移除,然后在 Talbingo 平巷重新组装,准备开始 6 公里长的尾水隧道。在平巷,TBM 支架和支持基础设施的建设正在进行中。新的刀盘现已到位,并与新的前盾和中盾焊接在一起。
报告期内,项目实施取得了一些新进展。报告期内,临时和永久工程(即 01、02 和 03 号平底隧道的建设、永久员工住宅区的建设、主通道隧道入口区域的建设以及大坝区域的临时设施)仍在进行中。必要的设计变更(例如将旁路隧道改造为引水隧道以及在大坝体内设置额外的底部出口以排除沉积物)已获得亚行批准,这些变更正在纳入项目的详细设计中。项目土木工程于 2022 年 9 月开始,约 6% 的工程于 2023 年 6 月完成,截至 2023 年 12 月,工程进度约为 8%。
• 可自由配置的单声道、立体声和 5.1 通道,具有灵活的处理顺序 • 可扩展的控制界面,最多可配备 128 个推子条和主控部分 • 每个托架中都可以安装主通道控件,从而实现硬件冗余和多个访问点 • 通过触摸屏和图形离线配置对每个节目进行简单的设置 • 通道分层排列,活动层的控制位于触摸屏下方 • 重新排列通道或“克隆”通道到所有层,即使在直播时也是如此 • 独特的图形前面板管理提供对处理的冗余访问 • 舞台接口箱带有远程控制的麦克风输入、线路和分离输出以及冗余光纤连接上的 GPI 选项
摘要:运动想象 (MI) 任务的分类为残障人士与脑机接口环境的连接提供了一种强大的解决方案。精确选择脑电图 (EEG) 信号的可调 Q 小波变换 (TQWT) 的均匀调谐参数是一项艰巨的任务。因此,本文提出了稳健的 TQWT,用于自动选择最佳调谐参数,以准确分解非平稳 EEG 信号。探索了三种进化优化算法来自动调整稳健 TQWT 的参数。使用分解的均方误差的适应度函数。本文还利用拉普拉斯分数进行通道选择以选择主通道。使用最小二乘支持向量机分类器的不同核对从稳健 TQWT 子带中提取的重要特征进行分类。径向基函数核提供了 99.78% 的最高准确率,证明了所提出的方法优于使用相同数据库的其他最先进方法。
桥配置:四分之一桥、四分之一动态桥、半桥和全桥;可通过开关选择 桥完成:开关选择 120 欧姆或 350 欧姆内部精密完成电阻 桥激励:前面板可调、隔离 1.25VDC 至 15.0VDC;前面板开/关开关;为电压表提供的监视器插孔 桥平衡:前面板按钮或遥控器激活自动桥平衡循环 LED 指示不平衡状态 操作模式:开关选择交流耦合、直流耦合、零、直流校准或外部校准信号 增益:主通道:前面板 1- 5000;直流通道:板上安装跳线可选择增益 1、100、200、500 频率响应:直流至 100kHz,滤波器为 200、500、5k、16k、32kHz 直流通道:直流至 10Hz 校准:分流校准或外部校准 信号输出:±10V 最大值,100mA 峰值负载 输出限制:如果输出信号超过 1VRMS,前面板 LED 灯亮 输出噪声:2.5mV RMS RTI 最大值,G=1000 时直流至 32kHz 根据所需的通道数,可提供各种机架适配器
桥路配置:四分之一桥、四分之一动态桥、半桥和全桥;开关可选 桥路完成:开关选择 120 欧姆或 350 欧姆内部精密完成电阻 桥路激励:前面板可调、隔离 1.25VDC 至 15.0VDC;前面板开/关开关;为电压表提供的监视器插孔 桥路平衡:前面板按钮或遥控器激活自动桥路平衡循环 LED 指示不平衡状态 操作模式:开关选择交流耦合、直流耦合、零点、直流校准或外部校准信号 增益:主通道:前面板 1- 5000;直流通道:板上安装跳线可选择增益 1、100、200、500 频率响应:直流至 100kHz,滤波器为 200、500、5k、16k、32kHz 直流通道:直流至 10Hz 校准:分流校准或外部校准 信号输出:最大 ±10V,峰值负载 100mA 输出限制:如果输出信号超过 1VRMS,前面板 LED 灯亮 输出噪声:2.5mV RMS RTI 最大,G=1000 时直流至 32kHz 根据所需的通道数,可提供各种机架适配器
直径 7.5 米 长度 62 米。 隧道数量 2 3.4 尾水隧道(混凝土衬砌)形状圆形长度 300.6 米直径 10.7 米 3.5 出口结构下进水口/泵进水口类型梯形,带防涡流百叶窗进水口尺寸 6 个跨度,每个跨度 5.7 进水口门槛高度 EL。263 米 3.6 发电站类型地下,尺寸 105mx23.5mx51.5m 3.7 变压器室(包括二次 GIS)类型地下长x宽x高 90 米X18.5 米X30.0 米 3.8 主通道隧道 (MAT) 类型 D 形尺寸直径 8 米。3.8 电缆接入隧道 (CAT) 类型 D 形尺寸直径4.0 机电设备 4.1 泵涡轮机类型 垂直轴可逆式混流式涡轮机 机组数量 2(两台) 涡轮机最大扬程 206.22 米 额定涡轮扬程 189.40 米 涡轮机最小扬程 155.77 米 额定扬程下的涡轮机输出功率 250 MW 泵最大扬程 218.68 米 额定泵扬程 200.54 米 泵最小扬程 168.23 米 额定涡轮扬程下的涡轮机最大流量
毛细管驱动的微流体设备对现场分析具有重大兴趣,因为它们不需要外部泵,并且可以用廉价的材料制成。在毛细管驱动的设备中,由纸张和聚酯膜制成的设备最常见,并且已用于广泛的应用中。但是,由于毛细力是唯一的驱动力,因此很难控制流动,并且必须使用更改几何形状等被动流控制方法来完成各种分析应用。本研究提出了几种可在层压毛细管驱动的微流体设备中使用的新流量控制方法,以提高可用功能。首先,我们引入了可以停止并开始流动的推动阀系统。这些阀可以停止流动> 30分钟,并通过按下通道或将其他流体流动到阀区域进行打开。接下来,我们提出了Y形通道的流控制方法,以实现更多功能。在一个示例中,我们证明了准确控制浓度以创建层流,梯度和完全混合流的能力。在第二个示例中,通过调整入口通道的长度来控制主通道中的流速度。另外,随着入口长度的增加,流速度是恒定的。最后,检查了Y形装置中的流速与通道高度和流体特性(例如粘度和表面张力)的函数。与以前关于毛细管驱动通道的研究一样,流速受每个参数的影响。此处介绍的流体控制工具将为各个领域的低成本需求测定方法提供新的设计和功能。