加速量热仪,99,100 可接受性指数,8 绝热压缩,200 老化,106 飞机氧气火灾,171 铝及合金,8,17,18,27,31,35,47,55,83,119,123,130,132,133,137,139,146,147,149,150,173,178,179,201 ASTM 委员会 G-4,7,8,12,14,16,98,109,229 ASTM D 2863,154 ASTM G 63,13,14 ASTM G 72,99, 109 ASTM G 88, 13
疲劳寿命预测,178 疲劳极限,101 疲劳特性,8 蒸汽轮机钢,210 断裂力学,60,101,129,153 频率,13 微动,机械部件,190 微动桥,接触压力分布,85 微动腐蚀,23 球墨铸铁和钢的疲劳强度,178 高强度低合金钢,217 微动装置,13 微动疲劳,33 铝导体钢增强电导体,231 碳纤维增强环氧层压板,243 接触压力分布,85 腐蚀作用,217 具有明确定义特性的实验,69 微动图和,49 历史,8 机制,23 发电行业,153 强度改进模型分析,101 变量,60 微动疲劳损伤表征技术,170 成核, 23 微动疲劳试验方法评估,33 概念框架,1 现行实践,263
缺陷簇,78 变形,401 扩散辐射增强,516 扩散对,516 凹陷,3,15 位错,419,579 位错环,78,727,741 位移率,429 剂量-损伤相关性,221,727 剂量测定,605 dpa,221,429,446,479,553,727 落锤重量,208 延性断裂,15 延性-脆性转变温度,123,138,311,565
声波,536-546 衍射和模式转换信号,541-542 分布弹簧常数,539-541 与裂纹的相互作用,536-537 界面透射率,539,541 局部应力强度因子,543-546 通过透射和衍射信号接收,537-538 界面残余应力,542-543 剪切波信号,542 超声波穿过裂纹的传播,539-540 垂直于裂纹表面的波传播,538--541 艾里应力函数,313 合金,139,171 铝合金,121,270,528,583-597,640,642-643 施加与有效试样几何形状,227-228 基线传播数据,571-572 化学成分, 122,584 顺应性方法,587 恒定载荷振幅试验,569-570 裂纹扩展基线数据,428-430 速率变化,37-38 裂纹张开应力强度因子变化,37-38
飞机 波音 707, 259 压缩构件, 243 油箱外皮, 277 机身, 226 F-4 战斗机, 277 F-15 战斗机, 243 水平稳定器, 259 结构维护, 291 美国空军 T-39 运输机/教练机, 291 机翼, 243 铝合金 A356-T6, 54 2014-T6, 153 7075-T6, 281 7079-T6, 271 ASME 规范 锅炉和压力容器规范, 7,212 非燃烧压力容器规范, 53 ASTM 标准 A 356-77, 56 B 26-82b, 54 E 8-82, 54 E 23-82, 6 E 399-83, 54, 69, 88 E 606-80, 146 E 813-81, 7, 91
碳化,75 现场浇注,弹性膜,121 阴极保护混凝土桥梁构件,38 停车结构,29 耐化学性,107 氯化物污染,29,38,75 混凝土桥梁构件,阴极保护,38 取芯,75 开裂,75 性质,107 铺路砖,预制,83 钢筋,氯化物污染,29,38 建筑行业团队,角色,65 腐蚀,钢筋,38 裂缝桥接,弹性体,107,121 裂缝,83
查尔斯·阿诺德之家,224 化学处理“La Lonja”建筑,188 图腾,255 圣母代祷教堂(Pokrova Bogoroditsy Sobor),25 显圣容教堂(Preobrazhenskaya Tserkva),25,41,61,66 气候条件,79 南极木屋,269 显圣容教堂,41 爱沙尼亚露天博物馆,95 Coniophora puteana,116
疲劳寿命预测,178 疲劳极限,101 疲劳特性,8 蒸汽轮机钢,210 断裂力学,60,101,129,153 频率,13 微动,机械部件,190 微动桥,接触压力分布,85 微动腐蚀,23 球墨铸铁和钢的疲劳强度,178 高强度低合金钢,217 微动装置,13 微动疲劳,33 铝导体钢增强电导体,231 碳纤维增强环氧层压板,243 接触压力分布,85 腐蚀作用,217 具有明确定义特性的实验,69 微动图和,49 历史,8 机制,23 发电行业,153 强度改进模型分析,101 变量,60 微动疲劳损伤表征技术,170 成核,23 微动疲劳试验方法评估,33概念框架,1现行实践,263
疲劳寿命预测,178 疲劳极限,101 疲劳特性,8 蒸汽轮机钢,210 断裂力学,60,101,129,153 频率,13 微动,机械部件,190 微动桥,接触压力分布,85 微动腐蚀,23 球墨铸铁和钢的疲劳强度,178 高强度低合金钢,217 微动装置,13 微动疲劳,33 铝导体钢增强电导体,231 碳纤维增强环氧层压板,243 接触压力分布,85 腐蚀作用,217 具有明确定义特性的实验,69 微动图和,49 历史,8 机制,23 发电行业,153 强度改进模型分析,101 变量,60 微动疲劳损伤表征技术,170 成核,23 微动疲劳试验方法评估,33概念框架,1现行实践,263
A533B 不锈钢,464 氢气吸收,5 醋酸盐,59,60 酸性燃烧残留物,104 活性滑移面,88 铜的吸附原子,78 氢气吸附,5 AGA 管道研究委员会,152-153 空气,6-7,319,335 铝合金中的开裂,334,374 在负载试验中,007,303,347 在超级合金测试中,303,319 航空发动机,103 AISI 41XX 钢,137 AISI 431 钢,505,506 AISI 4340 钢,5-7,103 AISI 不锈钢,266 合金 825,505,506 合金,5,31铜金,76,78,86 在酸性环境中,136 钢,5,7,136 铝合金,334,374,393,2024,348 2024 T351,348,374 7075 T6,348,393 7075 T651,334,393,395 7075 T7351,334 铝锂合金,334 美国石油协会 (API) 规范 5AC,137 氨溶液和黄铜,88 氯化铵,103 硝酸铵,104 阳极极化,76 API 5LB 钢,170 API 5LX X65 钢,170 API 规范 5AC,136-7水环境(另见地下水、海水、溶液化学和水),103,495 ASME 锅炉和压力容器规范,第 XI 节,附录 A,283,463