摘要 立方体是纳米生物工程的产物,是一种自结构脂质纳米粒子,其作用类似于载药的诊断探针。本文,我们描述了一种制备组合载药立方体的简单方法,经原理验证,该立方体具有治疗癌细胞的作用以及诊断能力。抗癌药物顺铂和紫杉醇组合装载在立方体中。立方体上涂有一层聚-Ɛ-赖氨酸,这有助于避免药物最初的爆发性释放,并允许缓慢和持续释放以获得更好的疗效。用透射电子显微镜对立方体进行成像,并通过差示扫描量热法和X射线衍射图研究在体外分析其分散性。显微图像描绘了球形多角结构,很容易区分。分析表明,药物均匀分散在整个立方体中。通过 zeta 电位测量、体外释放和包封率研究进行了进一步表征。体外研究表明,立方体涂层最初成功地减少了药物的爆发性释放,并证实了随着时间推移,药物释放缓慢而持续。使用人肝癌 HepG2 细胞系评估了涂层、未涂层和空白立方体的细胞毒性比较,发现这些制剂完全无毒,与空白制剂相似。通过阻抗测量和荧光成像证实了立方体对 HeLa 细胞的治疗效果。此外,用涂层组合立方体处理的细胞阻抗降低证明了 HeLa 细胞的损伤,这通过荧光显微镜得到证实。
功能性氧化石墨烯(GO)由于其面积大、毒性低、表面带有多种功能基团等特性,在生物医学研究领域引起了广泛关注,1,2因此,GO在药物输送方面具有良好的应用前景。3例如,徐建军研究组报道了一种基于氧化石墨烯(GO)和MnWO4的多功能诊疗纳米平台,GO作为载体,由于非共价作用,对抗癌药物盐酸阿霉素(DOX)有较高的负载量,且可在较低的pH值下触发药物释放。4蒋建军研究组通过将DNA适体与聚多巴胺氧化石墨烯纳米片相结合,制备了一种刺激响应性纳米平台,用于可控药物的输送和释放,GO纳米片作为阿霉素(DOX)的纳米载体。 5 Li 的研究小组设计并合成了肝素和聚乙烯亚胺 - 叶酸修饰的氧化石墨烯,以靶向具有高 DOX 负载能力的生物材料,从而增强细胞摄取。6 尽管许多药物输送
摘要基于聚合物的药物载体已彻底改变了药物景观,为有效的药物提供了创新的方法。这些高级系统大大减轻了传统挑战,为靶向和受控药物释放提供了新的途径。本文旨在探索聚合物,重点关注其分类,性质,药物释放机制和药物应用,同时强调该领域的最新进展和未来前景。聚合物可以根据其起源,生物降解性和物理特性进行分类。它们的独特特征,例如生物相容性,灵活性和修饰表面特性的能力,使其非常适合药物输送应用。评论研究了由聚合物基于聚合物的系统采用的各种药物释放机制,包括扩散,降解,肿胀和刺激反应释放。这些机制确保了治疗剂的控制和持续释放,从而增强了功效并降低了副作用。基于聚合物的药物载体的药物应用是广泛的,涵盖了靶向递送到特定的组织或细胞,持续释放的制剂以及蛋白质和核酸等复杂分子的递送。尽管具有优势,但基于聚合物的药物输送系统仍面临局限性,包括潜在的毒性,稳定性问题和制造挑战。通过持续的研发解决这些限制对于推进该领域至关重要。总而言之,聚合物介导的药物输送系统代表了药物技术中的重大飞跃。最近的进步,例如智能聚合物和纳米技术的整合,有望克服这些挑战并提高药物输送效率。这篇评论强调了聚合物在现代医学中的重要性,革新药物输送的潜力以及在临床应用中优化其使用的持续努力。关键字:基于聚合物的药物载体,药物输送系统,生物相容性,受控释放,靶向输送,智能聚合物,纳米技术,药物应用,药物释放机制,可生物降解的聚合物。国际药物输送技术杂志(2024); doi:10.25258/ijddt.14.3.89如何引用本文:Bharathy P,Thanikachalam PV。聚合物介导的药物输送系统的最新进展和未来前景:全面综述。国际药物输送技术杂志。2024; 14(3):1896-1907。支持来源:零。利益冲突:无
与宫颈癌细胞增殖有关(Wu and Yang,2018;Lv and Guan,2018)。值得注意的是,与游离 CDDP 相比,CD59 抗体偶联制剂的细胞存活率明显降低。miR-1284 和 CDDP 的结合可对宫颈癌细胞产生协同抗癌作用。我们预计 miR-1284 可能会增加 HeLa 癌细胞的化学敏感性,从而导致增强的细胞杀伤效果。必须注意的是,CLSM 和流式细胞仪分析中观察到 CD/LP-miCDDP 的细胞存活率明显低于 LP-miCDDP,这是由于其细胞内化率较高。观察到 CDDP、LP-miCDDP 和 CD/LP-miCDDP 的 IC50 值分别为 12.4 µg/ml、7.23 µg/ml 和 3.12 µg/ml,与
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审证明)提供的,他已授予Biorxiv的许可证,以在2024年2月1日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2023.10.30.564663 doi:Biorxiv Preprint
摘要:近年来,减载技术在运输机上得到越来越广泛的应用。对于已服役的飞机,减载可以延长疲劳寿命,或实现微小的配置变化。如果在飞机设计过程中考虑减载,则可以减轻飞机的结构质量。本文研究了各种机动和阵风减载算法以及未来潜在的飞行操作、湍流预测和材料科学技术,并评估了可以实现的质量减轻。以一架远程运输机为参考,考虑的载荷工况条件为1-cos阵风、机动和准定常着陆。基于载荷,优化了升力面的复合结构,同时保持次级质量以及机翼平面形状不变。实施所有技术后,翼盒重量可减少 26.5%,或减少空载重量的 4.4%。
a 应用空间技术实验室(ApSTL),电子电气工程系,思克莱德大学,204 George St, Glasgow, G1 1XW,英国 b 空间系统研究组,工程学院,曼彻斯特大学,Oxford Rd, Manchester, M13 9PL,英国 c 爱丁堡大学地球科学学院,爱丁堡,EH9 3FF,英国 d 英国天文技术中心(UKATC),科学与技术设施委员会(STFC),爱丁堡皇家天文台,Blackford Hill, Edinburgh, EH9 3HJ,英国 e Space Flow Ltd,51/3 Warrender Park Road, Edinburgh, EH9 1EU,英国 f Sylvera Ltd.,20 Chiswell St, London, EC1Y 4TW,英国 g 科学与环境研究所,坎布里亚大学,The Barn, Rydal Rd, Ambleside LA22 9BB,英国
摘要 — 基于卫星的量子密钥分发 (QKD) 能够实现长距离量子安全通信的密钥传输。该技术的成熟度和工业兴趣不断增加。卫星自由空间光通信的技术准备度也在不断提高。卫星 QKD 系统包括量子通信子系统和经典通信子系统(公共信道)。两者都采用自由空间光学实现。因此,在卫星 QKD 系统设计中,应尽可能地利用强大的协同效应,并实现全光卫星 QKD 系统。在本文中,我们提出了一个这样的系统,将所有光信道定位在 ITU DWDM C 波段中。我们专注于量子和经典信号传输的总体概念设计和光信道设置。系统描述涉及发射器激光终端(Alice 终端)、接收器激光终端(Bob 终端)、公共信道实现、接口 QKD 系统和部署的加密系统的面包板。Alice 终端的设计基础是激光终端开发 OSIRISv3。 Bob 终端的设计基础是地面站开发 THRUST。后者包含自适应光学校正,以实现单模光纤耦合。这使得它能够与几乎任意的量子接收器(如所述实验中使用的 Bob 模块)进行接口。公共信道由双向 1 Gbps IM/DD 系统和调制解调器组成,
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年6月26日发布。 https://doi.org/10.1101/2023.10.30.564663 doi:Biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年8月9日。 https://doi.org/10.1101/2023.10.30.564663 doi:Biorxiv Preprint