摘要带电粒子的重建将是高亮度大型强子对撞机(HL-LHC)的关键计算挑战,其中增加的数据速率导致当前模式识别算法的运行时间大大增加。此处探索的另一种方法将模式识别表示为二次无约束的二进制优化(QUBO),该方法允许在经典和量子退火器上运行算法。虽然提出的方法的总体时间及其缩放量仍待测量和研究,但我们证明,就效率和纯度而言,可以实现LHC跟踪算法的相同物理性能。将需要进行更多的研究以在HL-LHC条件下实现可比的性能,因为增加的轨道密度降低了QUBO轨道段分类器的纯度。
量子信息技术为提高设备相干性,对材料和界面的质量提出了严格的要求。然而,人们对顺磁杂质的化学结构和来源知之甚少,这些杂质会产生通量/电荷噪声,导致脆弱量子态的退相干,阻碍大规模量子计算的发展。在这里,我们对量子器件的常见基板-Al 2 O 3 进行高磁场电子顺磁共振 (HFEPR) 和超精细多自旋光谱分析。在无定形形式下,-Al 2 O 3 也不可避免地存在于铝基超导电路和量子比特中。检测到的顺磁中心位于表面之内,具有明确但高度复杂的结构,延伸到多个氢、铝和氧原子。建模表明,这些自由基可能源自许多金属氧化物中常见的活性氧化学。我们讨论了 EPR 光谱如何有益于寻找表面钝化和退相干缓解策略。
这个思想实验有电磁和引力两种版本;讨论适用于其中一种或两种。在时间 t = 0 之前,爱丽丝开始用自旋在 x 方向的粒子,并将其送入施特恩-格拉赫装置,从而将其置于自旋“向上”和自旋“向下”各 50%-50% 的叠加态中。在 t = 0 之前,鲍勃将他的粒子放在一个陷阱中。从时间 t = 0 开始,爱丽丝将她的粒子送入“逆向施特恩-格拉赫装置”,并确定其相干性(例如,通过测量其 x 自旋)。在时间 t = 0 时,鲍勃从陷阱中释放他的粒子,并试图通过测量爱丽丝粒子的库仑/牛顿场强度来获取爱丽丝粒子的“哪条路径”信息。如果爱丽丝和鲍勃在彼此光程时间内完成测量,爱丽丝的叠加态会保持相干性吗?
我们提出了一种通用的量子后误差校正技术,用于量子退火,称为多Qubit校正(MQC),该技术将开放系统中的演变视为GIBS采样器,并将一组(第一个)激发态降低到具有较低能量值的新合成状态。从给定(ISING)哈密顿量的基态取样后,MQC比较了激发状态对以识别虚拟隧道的对,即一组Qubits,这些Qubits可以同时改变其状态,从而导致具有较低能量的新状态,并依次将其收敛到地面状态。使用D-Wave 2000Q量子退火器的实验结果表明,与最近的硬件/软件在量子退火领域(例如反向量子退火,增加样本间延迟,以及类型的前延迟,以及后期的预/后处理方法)相比,MQC发现具有明显较低的能量值并提高结果可重复性的样品。
许多工业界感兴趣的问题都是 NP 完全的,随着输入规模的增加,计算设备的资源会迅速耗尽。量子退火器 (QA) 是一种物理设备,旨在利用自然界的量子力学特性来解决这类问题。然而,它们与经典机器上的高效启发式算法和概率或随机算法相竞争,后者允许找到大型 NP 完全问题的近似解。虽然 QA 的第一批实现已经投入商业使用,但它们的实际好处还远未得到充分开发。据我们所知,近似技术尚未受到广泛关注。在本文中,我们探讨了如何为量子退火程序系统地构建不同程度的问题近似版本,以及这如何影响结果质量或给定一组量子比特上较大问题实例的处理。我们在不同的开创性问题上展示了模拟和真实 QA 硬件上的各种近似技术,并解释了结果,以更好地理解当前和未来量子计算的现实能力和局限性。
论文主要分析开放量子系统,即与周围环境交换能量和信息的系统。特别关注开放系统所遭受的退相干或量子相干性的丧失现象,这种现象由于相互作用而表现出来。我们深入探索了测量机制,其中还包括与周围环境的相互作用。退相干理论认为,所有现存的物理系统本质上都是量子的,特别是在宏观系统的情况下,由于信息在状态叠加中丢失,“经典性”从相互作用中产生。可以估计量子相干性丧失发生的时间尺度,并且可以看出,对于宏观系统而言,这发生得非常快。研究还表明,该过程是不可逆的,因为它会导致熵的增加。利用量子纠缠现象来处理相互作用。
18。如果由于a而产生费用,则不会支付福利。滥用药物,有毒物质,酒精或非处方药的使用; b。在100毫升的血液中,驾驶机动车辆在受到药物,有毒物质或酒精水平超过80毫克的损害时; c。根据犯罪领域的立法,委托或试图直接或间接犯下一项刑事法案; d。与参与起义,战争或战争行为有关的任何伤害或疾病所需的治疗,服务或用品(是否宣布);参与任何民事骚动,暴动公众对抗,劫持,恐怖主义或任何其他侵略行为;任何国家武装部队的敌对行动;或在任何国家的武装部队中服役。
人们已经尝试过多种方法来设计有效的方法来寻找 QA 中 Ising 问题的映射。这些尝试可以分为两类。第一种方法是寻找具有近乎最优嵌入的完全图的嵌入,同时考虑目标图的结构。第一项工作是由 V. Choi [3] 提出的,它提供了三角布局上完全图的最佳嵌入(TRIAD 方案)。这项初步工作由 C. Klymko 等人完成。[6],他们提出了一种次要嵌入方法,专门用于在由定期分派的完全连通二分子图组成的格子上查找团嵌入。该方法考虑不可操作的量子位(目标图通常包含一些禁用的量子位),并生成从初始近乎最优的团嵌入派生的有效嵌入。第二种方法考虑在部分已知或未知的目标图上嵌入未知结构化输入图的算法。[2] 中提出了一种初始的通用启发式方法,并在 [4] 中实现。该算法由两步组成:第一步是为每个逻辑量子位找到一个允许重叠的初始映射(即,顶点 v ∈ V t 可能映射 V s 中的多个顶点 ϕ ( v )。第二步是细化,通过删除顶点映射 ϕ ( v ) 并寻找该顶点的更好映射来迭代改进映射,从而最小化物理顶点的总数。顶点映射的质量用成本函数计算。没有任何重叠的输出图被认为是有效的。当在特定次数的尝试期间没有取得任何改进时,细化阶段结束。其他几种启发式算法一直在重复使用这种算法
我们提出了多量子比特校正 (MQC) 作为量子退火器的一种新型后处理方法,该方法将开放系统中的演化视为吉布斯采样器,并将一组激发态简化为具有较低能量值的新合成态。从给定 (Ising) 哈密顿量的基态采样后,MQC 比较激发态对以识别虚拟隧道(即一组同时改变其状态的量子比特可以产生具有较低能量值的新状态),并依次收敛到基态。使用 D-Wave 2000Q 量子退火器的实验结果表明,与量子退火领域的最新硬件/软件进步(例如自旋反转变换、经典后处理技术和连续测量之间增加的样本间延迟)相比,MQC 可以找到能量值明显较低的样本并提高结果的可重复性。
被捕获的离子可以通过用激光激发其内部电子态形成有效的量子二能级系统,从而充当有前途的可扩展量子比特,而离子在谐波势阱中的量化运动状态使我们能够通过库仑力与相邻离子相互作用。因此,高保真操作需要精确了解系统的运动退相干时间,即离子的运动状态不再可靠地被知道或不再能被控制的时间。现有的运动相干性测量通过将运动状态与激光驱动的内部跃迁耦合来间接控制和测量运动状态,因此,它们可能容易出现电子状态退相干和激光幅度或频率波动。在本论文中,我们应用了之前提出的直接电场操纵被捕获离子运动相干态的机制,在一种新的自由进动序列中测量运动相干时间。该序列由连续谐振子相空间中两个相位差可变的相干位移组成,由可变的延迟时间分隔。在 4 开尔文的超高真空室中,使用位于铌表面电极阱上方 50 微米处的锶-88 + 离子,我们测量了 (24 ± 5) 𝑠 − 1 的运动退相干率。该测量速率与系统的预期退相干率相匹配,其中捕获离子加热在幅度上超过其他形式的退相干,这很可能是我们系统的情况。