众所周知,抽象的癌症治疗会引入心脏毒性,对结局产生负面影响和生存。识别患有心力衰竭风险(HF)的癌症患者对于改善癌症治疗结果和安全性至关重要。这项研究检查了机器学习(ML)模型,以使用电子健康记录(EHR)(包括传统的ML,时间感知的长期短期记忆(T-LSTM)(T-LSTM)和大型语言模型(LLMS),使用从结构性医疗代码中得出的新型叙事特征。我们确定了来自佛罗里达大学健康的12,806名患者,被诊断出患有肺部,乳腺癌和结直肠癌,其中1,602名患者在癌症后患有HF。LLM,GatorTron-3.9b,达到了最佳的F1分数,表现优于传统的支持向量机39%,T-LSTM深度学习模型乘以7%,并且广泛使用的变压器模型BERT,5.6%。分析表明,所提出的叙事特征显着提高了特征密度和提高的性能。引言癌症和心血管疾病是美国(美国)的前2个死亡原因,它们通常在多个层次上共存并相交。1-3癌症是全球重要的公共卫生问题,也是美国第二常见的死亡原因。在2023年,美国有1,958,310例新的癌症病例,导致609,820例死亡。4肺癌和支气管癌是最致命的癌症形式,估计导致127,070例死亡,其次是结直肠癌,估计有52,550例死亡。Yang等。 angraal等。 Yu等。Yang等。angraal等。Yu等。Yu等。乳腺癌是最常见的癌症诊断,估计有30万人。已知许多癌症治疗方式,例如化学疗法和放射疗法,都引入心脏毒性并可能导致心脏故障,这是癌症患者疾病和死亡的重要原因。5例癌症患者经常面临双重挑战,即不仅要管理其原发性癌症,而且还涉及癌症治疗的潜在心脏毒性作用。6即使不是直接心脏毒性,癌症治疗也会导致代谢,能量平衡,贫血和其他生理压力源的变化,这些胁迫可能会加速或发现先前存在的患者心脏病的倾向。为了解决这个问题,心脏肿瘤学是结合心脏病学和肿瘤学知识以识别,观察和治疗癌症患者心血管疾病的越来越感兴趣的领域。HF的发生率显着有限,对癌症的治疗方案显着影响,并对生活质量产生负面影响。使用电子健康记录(EHR)来识别有HF风险的癌症患者,以帮助决策并提高癌症治疗的安全性。通常将HF的预测作为二进制分类任务进行处理,该任务是使用机器学习模型来对其进行访问的,以将给定的个体分类为正(以HF风险)或负面(无HF风险)类别。先前的研究探索了使用EHR来使用传统的机器学习模型和基于神经网络的深度学习模型来预测HF的风险。混合神经网络11-13,包括混合动力7系统地探索了传统的机器学习模型,包括逻辑回归(LR),随机森林(RF),支持向量机(SVMS)和梯度增强(GB),具有单速和术语频率内文档频率(TF-IDF)特征编码策略。8开发了使用LR,RF,GB和SVM的HF患有HF的门诊病人的死亡率和住院模型。9探索了英国生物库的基因组学数据以进行心力衰竭预测。在这些先前的研究中,来自EHR的结构化医疗法规通常表示为具有零值和零值的向量,其中零表示患者没有相应的特征,而患者表示患者具有相应的特征,称为单次编码。然而,在单次编码期间,EHR的事实结构被简化为向量表示,而无需考虑时间关系。为了捕获事件时间结构,研究人员探索了深度学习方法,例如使用长期短期记忆(LSTM)10实施的复发性神经网络。