摘要:必须控制滑移迁移,以保持柔性包装的性能和质量。基于无机的抗块材料可用于控制滑动迁移。本文报道了抗块类型对抑制滑移迁移对聚乙烯单层膜的影响。用三种不同的抗块添加剂(即滑石,天然二氧化硅和合成二氧化硅)以及灰泥酰胺制成了一系列制剂。光学性质(雾兹)和摩擦特性(COF)以评估膜特性,因为在存在抗阻滞添加剂的情况下滑动迁移的发展。通过SEM-EDX进行了抗块材料的表征,通过GC-MS检查滑动添加剂类型,而FTIR分析了表面上的滑动含量。结果表明,在七天后,合成二氧化硅抗块的COF可达0.095,薄膜表面上有痕量丘疹含量为394 ppm,这是其他类型的抗块中最低的抗块。合成二氧化硅抗块上较小的粒径和较高的二氧化硅含量导致更好的摩擦特性,这是限制陶瓷酰胺迁移到膜表面的良好障碍。
因此,本情况说明书重点介绍对低生物持久性碱土硅酸盐 (AES) 纤维(Superwool Plus、Superwool HT 和 Superwool 607 Max)化学品以及耐火陶瓷纤维开展的研究。它旨在对这些问题给出明确的答案,包括来自一系列独立测试的信息,这些测试由弗劳恩霍夫实验医学研究所 (ITEM) 于 2006 年和赫瑞瓦特大学于 2017 年完成。这些研究表明,低生物持久性 AES Superwool 和耐火陶瓷纤维在促进结晶二氧化硅形成的条件下加热结晶时,不会表现出与其可能含有的任何二氧化硅有关的危险活性。这些结果,再加上在熔炉维护和拆除期间测得的极低结晶二氧化硅暴露量,意味着从事这些活动不太可能导致任何与结晶二氧化硅相关的疾病风险。
摘要:在二十一世纪,工程纳米材料(ENM)吸引了兴趣的不断增长,在全球范围内彻底改变了所有工业部门。不断扩大的世界人口和新的全球政策的实施越来越多地推动社会迈向生物经济,重点是促进采用基于生物的纳米材料,这些纳米材料功能性,具有成本效益,并且潜在地暗示在不同领域,包括医疗领域,包括医疗领域。这项研究集中于基于生物的和合成起源的二氧化硅纳米颗粒(SIO 2 -NPS)。SiO 2 -NP由二氧化硅组成,二氧化硅是地球上最丰富的化合物。由于其特征和生物相容性,它们在许多应用中广泛使用,包括食品工业,合成过程,医学诊断和药物输送。使用斑马鱼胚作为体内模型,我们评估了与商用的亲水性粉丝NPS(SIO 2 -AerosiL200)相比,稻壳(Sio 2 -RHSK NPS)的无定形二氧化硅NP的影响。我们评估了在组织化学和分子水平上胚胎暴露于两种纳米颗粒(NP)的结果,以评估其安全性,包括发育毒性,神经毒性和促炎潜能。结果显示了两种二氧化硅NP之间的差异,这表明基于生物的SIO 2 -RHSK NP不会显着影响中性粒细胞,巨噬细胞或其他先天免疫系统细胞。
光学活性先进发光材料已在光电子学、安全系统、光学成像和多种记录设备领域得到广泛应用。合成和表征具有生物或化学来源的天然或合成发光材料是当今科学研究的热门话题。因此,本文旨在提供有关某些自然现象的宝贵信息,例如光致发光、荧光、磷光、电致发光、阴极发光、生物发光、化学发光、离子发光、液致发光、放射性发光(闪烁)、声致发光和热激发发光及其不同类型。同样,还讨论了硫酸钠、双(8 羟基喹诺酮)、单分散二氧化硅、荧光二氧化硅球、硫醇修饰的发光二氧化硅、链霉亲和素修饰的发光二氧化硅、铱双吡啶、Eu (DBM) 3 作为探针分子、酚类偶氮染料、通过有机溶剂提取的植物黄酮类化合物和荧光素分子的一些合成方法,以及它们的应用和未来前景。关键词:发光、电致发光、化学发光、铱双吡啶、硫酸钠
在接近太赫兹频率下工作的下一代无线通信系统中,具有尽可能低的介电常数和损耗因子的电介质基板变得至关重要。在本文中,我们采用模板辅助溶胶-凝胶法合成了高度多孔(98.9% ± 0.1%)和轻质二氧化硅泡沫(0.025 ± 0.005 g/cm 3 ),它们具有极低的相对介电常数(300 GHz 时 ε r = 1.018 ± 0.003)和相应的损耗因子(300 GHz 时 tan δ < 3 × 10 −4)。在泡沫板上浸涂一层纤维素纳米纤维薄膜后,可获得足够光滑的表面,在此表面上可方便地沉积对电子和电信设备应用很重要的导电金属平面薄膜。在这里,银薄膜的微图案通过荫罩溅射到基板上,以展示双开口环谐振器超材料结构作为在亚太赫兹波段工作的射频滤波器。
摘要:硅藻是一种单细胞藻类,其细胞壁(称为硅藻壳)由透明的生物(或乳白色)二氧化硅组成,具有复杂且惊人的规则图案。在过去的 30 年里,这些微生物已被证明是合成二氧化硅的宝贵替代品,可满足实现药物输送载体、生物传感载体和光子晶体的众多制药要求。硅藻的结构特征以及硅藻壳的化学改性可能性使得生物二氧化硅可以相对简单地转化为潜在的生物医学应用装置。在这篇简短的综述中,我们探讨了硅藻衍生的生物二氧化硅在药物输送和生物传感领域的应用。具体来说,我们考虑使用硅藻进行抗癌和抗生素药物的靶向输送,以及如何使用相同的微藻制造生物传感器,通过荧光和表面增强拉曼散射技术评估其分析物信号响应。我们将讨论限制在过去七年内发表的研究,目的是尽量减少与之前发表的贡献相关的重复。
纳米素是一个新型的磁盘,上面覆盖了高密度的微型和纳米结构二氧化硅,可用于快速提取和纯化高质量的DNA和RNA。高表面积和独特的结合机制使其具有非凡的结合能力,可以在微离心管格式中隔离高纯度,高分子量(HMW)DNA。它使用标准的液化,绑定,洗涤和洗脱程序,对于二氧化硅DNA提取技术是常见的。每个管中使用一个磁盘。但是,与磁珠和二氧化硅自旋柱不同,这些磁珠剪切了大DNA,纳米蛋白磁盘结合并释放了DNA而不破碎的DNA,以将DNA长到巨囊中。
氧化是将晶圆上的硅转化为二氧化硅的过程。硅和氧的化学反应在室温下就开始了,但在形成非常薄的天然氧化膜后停止。为了获得有效的氧化速率,晶圆必须在高温下放入有氧气或水蒸气的炉子中。二氧化硅层用作高质量绝缘体或离子注入的掩模。硅形成高质量二氧化硅的能力是硅仍然是 IC 制造中的主要材料的重要原因。氧化技术 1. 将清洁的晶圆放置在晶圆装载站中,然后将干氮 (N2) 引入腔室。当炉子达到所需温度时,氮气可防止发生氧化。
非常适合于隔热和隔音材料。此外,玻璃材料的制造成本非常高,而且还需要长时间的热处理,从而消耗大量的能源。另一方面,通过采用低成本的常压干燥工艺,可以显著节省透明二氧化硅气凝胶的制造成本。然而,二氧化硅气凝胶由于其项链状微结构和弱的颗粒间结合,通常机械性较脆,14 并且在气凝胶材料中保持高隔热性和高光学透明度仍然具有挑战性。15 因此,在表现出低热导率的同时获得透明且机械强度高的二氧化硅气凝胶至关重要。在本研究中,我们报告了一种制造透明隔热二氧化硅气凝胶材料的合成策略,实现了 18 mW m 1 K 1 的低热导率和可见透明度(400 nm 和 800 nm 的广谱透明度为 70%)。溶剂交换过程促进了它们的光学透明度,而疏水表面改性则可抵抗环境压力干燥过程中的孔隙塌陷并保持其结构完整性。高可见光透明度、低热导率、8% 低声强的隔音效果以及加入透明聚合物的可扩展制造展示了它们在透明窗口材料中的潜在应用。同时,与透明二氧化硅气凝胶结合的太阳能接收器可以在 1 太阳辐射下 12 分钟内达到 122 摄氏度,比环境大气中高 200%。透明的工程结构
由于纳米粒子具有高比表面积和高表面活性,因此被广泛应用于不同的生物医学应用。7 纳米级载体由于其高稳定性、简便的化学功能、高效的细胞内化和高负载能力,在药物输送方面具有极大的吸引力。8 最近,人们还考虑开发具有不同表面化学和新颖能力的智能多功能纳米平台。9 在此背景下,利用靶向剂(尤其是抗体和适体)进行表面功能化,已被广泛用于高效、特异性地靶向递送纳米载体。10 用于同时诊断和治疗疾病的治疗诊断纳米平台的设计和开发是纳米技术的另一项杰出成就。11