0# 1 !6,722793!-897A-3:6!82M!0# 1 !26N+625.-5793!-3A!.65635793!57,6! D+,'4,/+#202=.,3',#"70.#='4+,'$4.0.3"4.2#'25' *6 ('"3'"#'"04,%#"4.1,'/"%72#'32$%/,'52%'4+,'8%29$/4.2#'25' /+,-./"03'92'#24'".-'"4'*6 ('3,V$,34%"4.2#:'7$4'"4'"'-2%,'3$34".#"70,'8%29$/4.2#'25'9,3.%,9'/"%72#K7"3,9' 8%29$/43;'D+,'%,4,#4.2#'4.-,'25'/"%72#'.3'4+,%,52%,'#24'"'%,0,1"#4'.#9./"42%'42'"33,33'4+,'.-8"/4'25'3$/+' 4,/+#202=.,3;'<,/&/0.#='"'/"%72#'"42-'5%2-'*6 ('/"#'"12.9'4+,'$4.0.3"4.2#'25'"#'"99.4.2#"0'1.%=.#'5233.0'/"%72#' 5,,9342/C:'"#9'*6 ( '1"02%.3"4.2#'4,/+#202=.,3'/"#',55,/4.1,0&'/2#4%.7$4,'42'*6 ( ',-.33.2#'"12.9"#/,'.#'4+,' /+,-./"0'.#9$34%&;'D+,'*6 ( ',-.33.2#3'%,9$/4.2#'25'3$/+'*6 ('1"02%.3"4.2#'4,/+#202=.,3'#,,93'42'7,',1"0$"4,9' "=".#34',L.34.#='8%29$/4.2#'%2$4,3'@.4+'"#'"88%28%."4,'-,4+29202=&'"#9'9,5.#.4.2#'25'3&34,-'72$#9"%.,3;'' "
根据国际能源署 (IEA) 和政府间气候变化专门委员会 (IPCC) 的观点,除了积极努力降低排放之外,碳管理技术对于本世纪实现温室气体 (GHG) 净零排放至关重要(图 1)。“碳管理”一词涵盖两大类:(1) 在二氧化碳 (CO 2 ) 进入大气之前从大型排放源(如工业设施和发电厂)捕获的技术,也称为点源碳捕获、利用和储存 (CCUS);(2) 通过直接空气捕获 (DAC) 和其他二氧化碳去除 (CDR) 机制去除大气中已经存在的二氧化碳的技术。 a 无论使用哪种技术来捕获二氧化碳,点源 CCUS 和一些 CDR 途径(包括 DAC)的下一步都涉及浓缩和净化捕获的二氧化碳、压缩和运输(最常见的是通过管道运输),最后,要么以一种让二氧化碳长期不进入大气的方式利用它,要么将其注入深层地下地质储层进行永久隔离。由于这些步骤的基础设施要求相同,本报告使用 CCUS 这一术语来指代包括 DAC 在内的所有类型的工业二氧化碳捕获。
为了增加并网社区和离网社区可再生能源发电量的比重,需要存储系统来弥补其间歇性。压缩空气储能 (CAES) 过程越来越受到关注。它们现在的特点是大规模、长寿命和经济高效的储能系统。压缩二氧化碳储能 (CCES) 系统基于相同技术,但以 CO 2 作为工作流体。它们允许在非极端温度条件下进行液体储存。对这项新技术进行了文献综述。这些系统之间的区别在于是否存在外部热源、储存的 CO 2 的热力学状态以及热回收和利用的方式。为了更好地理解各种各样的配置,它们根据外部热量的使用和存储位置(地下或地上)进行了分类。由于没有液体储存的动态模型,本文提出了一种模型,并带来了未来的研究中必须考虑的新挑战。此外,还缺乏实验研究来验证 CCES 行为以及涡轮机械和热储存器等一些组件。
摘要。为了解决当今最严重的环境问题之一,减少了碳足迹,全球已将注意力转移到二氧化碳(CO 2)存储中,作为潜在的解决方案。由于其独特的功能,页岩是该领域最有趣的选择之一。吸附是CO 2通过页岩中的方法,尤其是在其超临界条件下的方法。吸附等温线模型可用于推断这种吸附的行为和机制。Langmuir,Freundlich,Dubinin-Astakhov(D-A)和Brunauer-Emmett-Teller(BET)模型是在页岩上可用于CO 2建模的众多模型之一。我们试图将这些模型拟合到本研究中从文献来源收集的实验数据中,集中在中国各个地方的四个独立的页岩样本上。是来自志留纪longmaxi组的LMX1和LMX2,来自Sichuan盆地的Ordovician Wufeng地层的WF1,以及Ordos盆地Yanchang组的YC。这些页岩的总有机碳(TOC)含量为3.19至4.27。在三个不同的温度下获得了用于拟合模型的实验数据:35、45和55°C。Langmuir和D-A型号为所有样品和温度提供了最适合数据的拟合。r²值0.93429(对于35°C时的YC岩石)至0.99287(对于WF1在35°C时为WF1),在35°C下为0.88879至0.99201 LMX1。这些模型的理论基础是代表页岩上超临界CO 2的物理性质和吸附动力学,这是其性能的原因。最后,这项研究增加了我们对页岩上CO 2吸附的理解,为未来的研究和CO 2存储中的潜在实际用途提供了有用的见解。但是,需要进行更多的研究,以完全了解各种页岩中CO 2吸附的机制和影响因素,以及开发用于预测这种行为的模型。
1新墨西哥州阿尔伯克基桑迪亚国家实验室地球化学部2纳米级科学系,桑迪亚国家实验室,阿尔伯克基,新墨西哥州阿尔伯克基3高级科学与技术,桑迪亚国家实验室,桑迪亚国家实验室1新墨西哥州阿尔伯克基桑迪亚国家实验室地球化学部2纳米级科学系,桑迪亚国家实验室,阿尔伯克基,新墨西哥州阿尔伯克基3高级科学与技术,桑迪亚国家实验室,桑迪亚国家实验室
为了补偿CO 2捕获的高成本,本研究提出了一种新的解决方案,该解决方案将压缩的CO 2储能(CCES)系统集成到具有CO 2 Capture(Oxy_CCES)的氧气燃烧燃烧机中。能量存储的整合有可能从电价变化中产生套利。所提出的OXY_CCES系统可以达到34.1%的净效率,并且比液体的氧气储存氧气储存的氧气燃烧燃烧植物(Oxy_O 2)高34.1%,并且更高的发弹性效率为57.5%。建立了两种情况,即,建立了现有的氧气燃烧植物(S E I)和建造新工厂(S-II),以比较Oxy_CCES和OXY_O 2。在S E I中,OXY_CCE的回报时间为一年,在S-II中,OXY_CCE的电位电量成本(LCOE)增加了1.8%,低于OXY_O 2的电力。灵敏度分析表明,当峰值和谷电价格之间的差异以及能源存储系统的能力增加50%时,OXY_CCES系统的净现值(NPV)和LCOE分别增加了113.4%和1.7%,这会降低到NPV和LCOE的增加,而NPV和LCOE则增加了OXY_O_O的NPV和LCOE。©2022 Elsevier Ltd.
分析了瑞士从化石燃料向可再生能源过渡的技术机遇和经济后果。技术上实现的效率表明,完全电气化可带来最高效的能源系统和最便宜的电力。预计电力需求将几乎翻倍,与 2019 年相比,总体能源成本将增加 20%。然而,在没有任何储备和冗余的情况下,季节性电力储存的技术挑战高达 20 TWh。没有储存的水力发电和光伏发电产生的电力最便宜。未来的核裂变技术,例如熔盐钍面包化反应堆 - 目前仍处于实验阶段 - 可能成为 CO 2 中性连续发电最经济、对环境影响最小的解决方案。大规模增加水力发电的机会有限,将水的使用(9 TWh)从夏季转移到冬季已经是一个巨大的挑战。瑞士的光伏和氢气生产具有提供约 75% 电力的优势,无需季节性储存,因此电力成本明显低于进口氢气或合成碳氢化合物。对于航空和储备来说,最经济的解决方案是将进口的生物油转化为合成煤油,目前已经有大量此类储存。亮点
几十年来,联邦政府一直资助各种努力,探索在燃烧化石燃料作为能源的同时减少温室气体 (GHG) 排放的可行性。碳捕获与储存 (CCS) - 在源头捕获人造二氧化碳 (CO 2 ) 并在其释放到大气中之前将其储存起来的过程 - 已被提议作为在继续使用化石能源的同时减少大气排放的技术解决方案。永久性地下碳储存,称为地质封存,是将流体(包括气体或液态 CO 2 )长期封存在地下地质构造中。作为提高老化油藏产量的提高采收率 (EOR) 作业的一部分,可以注入 CO 2 并附带储存一部分。