使用合作方法合成二氧化锰(MNO2)纳米颗粒,其结构,光学和电化学性质被系统地表征。透射电子显微镜(TEM)表明,MNO2纳米颗粒表现出明确的形态,尺寸分布均匀。X射线衍射(XRD)分析证实了材料和拉曼光谱的晶体性质进一步支持MNO2相的鉴定。傅立叶转换红外(FTIR)光谱证明了特征官能团的存在,而紫外线可见(UV-VIS)光谱估计的光条间隙为2.9 eV。热重分析(TGA)强调了MNO2的热稳定性,观察到最小的体重减轻高达800ºC。使用环状伏安法(CV)和电化学阻抗光谱(EIS)评估电化学性能,以10 mV/s的扫描速率揭示了236.04 f/g的高特异性电容。这些结果表明,MNO2纳米颗粒具有出色的电化学性能,使其成为能源储能应用的有前途的候选人。关键字:锰二氧化碳,共同沉积法,电化学性能,储能应用。
二氧化锰 (MnO 2 ) 因作为水系超级电容器电极具有较宽的电位窗口而受到广泛关注。然而 MnO 2 的低电导率严重阻碍了它的进一步发展。可以通过在 MnO 2 中引入适当浓度的三价 Mn 离子来解决这个障碍。在此,通过电位电化学沉积法将 Mn 3+ /Mn 4+ 比可调的纳米结构 MnO 2 沉积到导电碳布基底 (CC) 上。在 70 °C 下沉积的 Mn 3+ /Mn 4+ 比约为 0.99 的 MnO 2 电极在 1 A g − 1 时显示 408.1 F g − 1 的比电容,在 10 A g − 1 下经过 2000 次循环后仍保持 99% 的容量。本文从Mn 3+ -O-Mn 4+ 的角度阐述了Mn 3+ 离子的引入对MnO 2 电极电化学性能的影响
摘要:全球性问题之一是各种生物废弃物对环境的污染。要解决这个问题,必须回收利用生物废弃物。无废弃技术也是节省可耗尽原材料的一种方式。电化学能源研究是目前离网能源发展最快的领域。电化学电容器可以长时间运行而不改变性能,尺寸更小,机械强度高,工作温度范围宽。这些特性是有效的节能装置。因此,超级电容器广泛应用于各个行业。本综述讨论了生物废弃物衍生的活性炭和碳-氧化锰(AC-MnO 2)基超级电容器电极的获取方法和特性。
Zēlos 开发了一种独特的专利电池结构,可以稳定传统的一次性碱性 (Zn-Mn02) 电极,从而实现广泛的可充电功能。Zēlos 在 1 小时充电、1 小时放电的条件下进行了超过 1,400 次的深度循环,这是一个要求极高的测试方案。Zēlos 正在开发一种家用 LDES 解决方案,该解决方案有可能在成本、安全性和环境性能方面树立新的标准。Zēlos 的锌-二氧化锰电池具有实现高循环率和深度放电水平的潜力,使其适用于广泛的应用,特别是在安全性和成本至关重要的领域。Zēlos 电池采用水基、不易燃的电解质和无毒的地球丰富电极材料(如锌 (Zn) 和二氧化锰 (MnO2))制造。所有材料都具有高能量密度和低成本。
能力 Silvia Bodoardo 的主要研究活动是在都灵理工大学的电化学小组,该小组开展了综合的国内和国际研究活动,这些研究活动由众多出版物记录,这些出版物记录了备受尊敬的外国研究人员以及国家和欧洲研究项目,候选人是这些项目的协调员或当地科学官员。多年来,研究一直专注于物理化学领域的各种研究方向,特别是电化学,研究催化材料和与某些类型的电化学能发生器相关的材料的电化学行为。主要研究课题为: - 碱性电池活性物质二氧化锰的结构特征和电化学性质(1991-2001) - 铅酸蓄电池(1995-1999) - 超导材料研究(2003-2005) - 锂离子电池电极材料研究 - 锂离子电池阳极等高容量材料研究 - 锂离子电池阴极等高电位材料研究 - 锂硫电池电极和电解材料研究 - 锂空气电池电极和电解材料研究 - 锂离子电池工业电池特性研究 - 电化学混合系统研究:高能量 / 高功率
摘要:只有使用家庭或大型光伏电站才能实现能源转换。然而,要高效利用光伏电力而不依赖于其他能源,只有使用电池才能实现。对不稳定可再生能源的固定存储需求不断增长,在成本、资源可用性和安全性方面提出了新的挑战。移动电话行业和当前对高压牵引电池的需求极大地推动了锂离子电池 (LIB) 的发展。这种全球成功之路主要基于其高能量密度。由于需求的变化,其他方面也凸显出来,需要重新平衡“电池生态系统”中的不同技术。在本文中,我们讨论了基于锌和二氧化锰的水系电池技术的发展,并确定了为什么反应机理和电解质领域的最新发现使得可充电 Zn-MnO 2 电池 (ZMB)(通常称为所谓的锌离子电池 (ZIB))在固定应用方面具有竞争力。最后,本文对当前实际应用面临的挑战和未来研究的概念进行了展望。本文旨在对 ZMB 的当前研究状态进行分类,并强调其在“电池生态系统”中进入市场的进一步潜力,讨论安全性、成本、循环寿命、能量和功率密度、材料丰富性、可持续性、建模和电池/模块开发等关键参数。
纳米技术是科学、工程和技术的一个分支,涉及原子或分子尺度上小于 100 纳米物质的尺寸和公差。纳米粒子由于其独特的尺寸依赖性而具有广泛的应用(Lu 等人,2012 年)。磁性纳米粒子因其广泛的应用而备受关注,例如蛋白质和酶的固定、生物分离、免疫测定、药物输送和生物传感器。纳米粒子由于尺寸小而具有较高的表面积与体积比,这赋予了纳米粒子非常独特的特性(Sagadevan 等人,2015 年)。纳米粒子独特的化学和物理性质使其非常适合设计新的和改进的传感设备;尤其是电化学传感器和生物传感器(Wang 等人,2016 年)。纳米粒子的重要功能包括固定生物分子、催化电化学反应、增强电极表面与蛋白质之间的电子转移、标记生物分子甚至作为反应物 (Luo et al. 2006))。一般来说,金属氧化物纳米粒子是无机的。Fe、Ni、Co、Mn 和 Zn 等各种纳米粒子是广泛接受的磁性材料,可用于磁传感器、记录设备、电信、磁性流体和微波吸收器等广泛应用 (Zhu et al. 2014;Poonguzhali et al. 2015)。在各种金属氧化物纳米粒子中,二氧化锰是一种重要的 P 型过渡金属氧化物
如今,纳米技术已广泛传播,并且在许多领域,尤其是医疗领域中起着重要作用。纳米颗粒(NP)具有独特的物理化学特性,从而提供了其他活动,这些活动鼓励它们在许多应用中使用。纳米颗粒可以通过三种主要方法合成:化学,物理和生物学。最好的方法是被认为是绿色,可持续,环保和经济的生物综合。这取决于生物或其提取物,包括植物,细菌,藻类,真菌和酵母,而不是有毒化学物质。酵母是有前途的微生物,最近引起了许多研究人员的注意,发现它们在纳米颗粒的生物合成中的潜力,可以应用于不同的领域。许多研究证明了各种酵母菌物种合成各种金属和金属氧化物纳米颗粒的能力,无论是细胞内还是细胞外。这样的纳米颗粒包括银,金,硒,硫硫磺,锌硫,钯,钯,二氧化锰和二氧化钛纳米颗粒。酵母介导的纳米颗粒具有生物医学活性,例如抗癌,抗氧化剂,抗渗透性和抗菌剂。研究表明,酵母合成的纳米颗粒具有安全和无毒的特性。与使用细菌和真菌对NPS生物合成的研究相比,较少的研究重点是在NPS生物合成中使用酵母,这使其成为在生物合成和NPS应用中更科学发现的有前途的领域。本综述概述了涉及酵母介导的纳米颗粒的生物合成和生物医学应用的先前研究。