摘要:一种新型的杂酵母(III)乙酰乙酸(ACAC)复合物,(L-5-CHO)2 IR(ACAC)(3B)(3B),是由2-(9'-己基碳唑-3'-3'-y-yly)合成的 - 5-5-5-甲基甲基)-5-甲基甲基吡啶(L-5-Cho)。复合物3b被确定为热化学稳定。研究了该化合物的光致发光特性,3B的二氯甲烷溶液在662 nm处产生无结构的发射,表明与父络合物相比,甲基基团红移151 nm。复合物3b也显示出具有中等的光致发光量子产率(67%)和短发射寿命(= 280 ns)。有机发光二极管(OLEDS)用由聚(N-乙烯基碳水化合物)(PVK),2-(4-tert-叔丁基苯基)-5-(4-二苯基)-1-1,1,3,4-4-oxadia-oxadia-oxadiazole(PBD)组成的溶液加工的发射层(EML)制造。含有复合物3b的OLED在624 nm处显示出红橙发光(EL)。研究了宿主材料的影响,并在发射层中使用PVK和PBD达到了最佳性能,结果OLED的当前效率为0.84 CD/A,功率效率为0.20 Lm/w,外部量子效率(EQE)的功率为0.66%,为2548 CD/M M 22548 CD/M M 2546%。
非洲叶 ( Vernonia amygdalina Delille) 对几种癌细胞的细胞毒活性较低。我们评估了它与阿霉素联合治疗对腔内乳腺癌细胞 MCF-7 和 MCF-7/HER2 细胞的效果。提取干叶以收集己烷、丁醇、二氯甲烷 (DCM) 和乙酸乙酯 (EA) 提取物,然后使用 MTT 检测法测试它们对 MCF7 和 MCF7/HER2 细胞的细胞毒活性。然后将最有潜力的提取物与阿霉素联合治疗以检查细胞毒性,随后用流式细胞术进行细胞周期和凋亡分析。所有提取物对 MCF7 和 MCF7/HER2 细胞均表现出低细胞毒活性或没有细胞毒活性。DCM 提取物对两种癌细胞都表现出弱细胞毒活性,IC 50 值为 220 µg/ml。然而,DCM 和 EA 提取物对两种细胞均具有与 Dox 协同的细胞毒性作用,具有很强的协同作用特征。两种提取物均诱导细胞周期在 DCM 的 S 期和 G1 期积累,而 EA 的积累则在 G1 期。两种提取物也与 Dox 一起引起细胞凋亡,但调节细胞凋亡的方式不同。总之,V. amygdalina 的 DCM 和 EA 提取物通过调节细胞周期和诱导细胞凋亡,为腔内乳腺癌提供了与 Dox 协同抗癌作用的潜在作用。
a b s t r a c t,以预浓缩一些持续的有机污染物(POP),例如有机氯农药(OCP),多环芳香芳烃,多氯苯基碳氢化合物(PAHS)和多氯二氯的分析(PCB),然后通过胃char(PCB)(PCB)(PCB)(PCB)分析(PCB)。 (GC – MS)。所研究的变量是提取溶剂类型和音量以及提取步骤的复制。HLLE方法的最佳实验条件为15 ml二氯甲烷,两种重复为第一个提取溶剂,而10 mL N-己烷则具有两个重复作为第二个提取溶剂。在最佳条件下,计算出的校准曲线给出了所有目标分析物的高级线性,平均相关系数高于0.996的平均相关系数,为0.998,ʃPAH为0.998,ʃPCB的平均相关系数为0.998,为0.999。ʃOOCPS的平均量为4.3%,ʃPCB的平均值为5.01%,PAHS的平均相对偏差为5.01%,而检测限为0.09–58.67 ng l -1,PAHS为0.1-45.6 ng l -1,对于OCPS和0.03 ng l -1,对于OCPS和0.03-14.14.14.14.14.14.14.5 ng l -14.51。此外,使用相对恢复的方法的准确性分别高于95.6%,87.8%和105.7%的ʃOOCPS,ʃPAH和ʃPCB。恢复的结果表明该方法的准确性是合适的,并且在理论预浓缩因子中表示低不确定性(PF = 1000)。
电子传输层(ETL)的材料在聚合物太阳能电池(PSC)的性能中起着重要作用,但是面临挑战,例如低电子传输迁移率和电导率,较低的解决方案处理性以及极端的厚度敏感性,这将破坏光伏性能和大型制造技术的兼容性。为了应对这些挑战,设计和合成了两个特殊胺锚定的长链链的新型N型二酰亚胺分子(PDINB)可行地设计和合成。pdinb在常见的有机溶剂中显示出非常高的溶解度,例如二氯甲烷(> 75 mg ml -1)和乙醇含有乙酸作为添加剂(> 37 mg ml -1),当在活动层上沉积时会导致出色的纤维形成性。使用PDINB为ETL,全面增强了PSC的光伏性能,从而导致功率转化效率(PCE)高达18.81%。由于PDINB的强大自动效应和高电导率,它显示出可观的厚度耐受性能,其中设备保持持续高的PCE值,厚度从5到30 nm变化。有趣的是,PDINB可以用作不同类型的PSC中的通用ETL,包括非富烯PSC和全聚合物PSC。因此,PDINB可以作为PSC的有效ETL的潜在竞争候选者。
许多微生物和酶都具有优先代谢、结合或化学改变外消旋底物的一个对映体,同时保持另一个对映体不变的能力。这种固有特性可以作为检测行星土壤中生物剂的实验基础。高灵敏度气相色谱技术 (1) 已被用于监测原型陆地实验中几种外消旋氨基酸底物的立体特定消耗。在典型的测定中,将土壤 (10 克)、外消旋氨基酸底物 (10 毫克) 和蒸馏水 (10 毫升) 在室温下摇动。不时取出等分试样 (约 1 毫升) 并用水 (10 毫升) 稀释。将土壤离心,并将上清液冻干。用亚硫酰氯-甲醇 (0.4 ml 在 5 ml 中) (2) 酯化并蒸发后,将残留物与 NV-三氟乙酰-L-脯氨酰氯 (0.2 mM) 在二氯甲烷 (2 ml) (1) 中在三乙胺 (0.06 ml) 存在下偶联。洗涤 (H,O) 和干燥 (Na.SO,) 后,将部分溶液 (~2 yl) 注入气相色谱仪。通过计算两种非对映异构体的峰面积,可以快速灵敏地记录未使用的 p/L 氨基酸浓度 (表 1,图 1)。我们的结果表明,底物的 t-对映体优先受到攻击,但不同氨基酸的使用速率不同。土壤热灭菌后立体特异性作用消失的观察结果证实了其中涉及生物过程。
6化学系,Banasthali Vidyapith,Newai-304022,Rajasthan India摘要摘要一个微型,基于Quecher的,液体 - 液 - 液体提取方法,然后开发了76个Qunice same and Samame and Samame and Samame and Samame and same and Samame and same and same and same and same prigental and tandem气体色谱 - 质量仪表/20212121212122/2022/202222221221212213122/2022222222222。来自印度地区德里NCR的确定农药残留物。评估了该方法的准确性,精度,特异性,线性,可重复性,可重复性,鲁棒性,稳健性,限制和该方法的定量限制。计算每个分析物的不确定性测量。使用液态液体提取过程将样品用二氯甲烷提取。使用多个反应监测(MRM)模式,通过不同的MS参数和色谱条件来优化每种农药。在每种农药的线性回归共效率(r 2)值中,确定为0.9856- 0.9997的范围。在1、5和10 LOQ尖峰水平的87.98-119.99中发现平均回收率百分比。可以实施符合法规要求的方法性能。LOD和LOQ分别为10µg/L和30µg/L。根据Sante 11312/2021,所有农药的不确定性的扩展测量值低于平均恢复值的±50%。有机磷,杀菌剂和拟除虫菊酯是最常见的农药。在这项研究中,在MRL上方发现了12种农药(EEC理事会指令1980/778/EEC)。此外,在地下水样品中发现了现在在印度被法律禁止的迪尔德林。该方法提供了具有令人满意的选择性,灵敏度,准确性和精度的多级农药的高通量分析。
NC方案S2。 3CNCZOXD的合成路线。 O -FoxD(0.50 g,2.08 mmol),(9 H)-Carbazole-3-碳硝基(0.48 g,2.50 mmol)和K 2 CO 3(1.44 g,10.41 mmol)在Dimethyl sulfoxide(5 mL)(5 mL)中被搅拌150 o c,在Dimethyl SulfoxiDe(5 mL)中均可搅拌24 h H in an an an an an an an an an an an an an an an an an an an an an an an an an an an n hh in an an an an an n h。 冷却至室温后,将混合物倒入水中,过滤,然后用柱色谱法纯化硅胶,用二氯甲烷/石油醚作为洗脱液,作为负担白色的固体(收率:75%)。 1 H NMR (400 MHz, DMSO-d6) δ (TMS, ppm) 8.90 (s, 1H), 8.49 (d, J = 6.6 Hz, 1H), 8.40 (d, J = 9.0 Hz, 1H), 8.01 (t, J = 7.8 Hz, 1H), 7.97 – 7.92 (m, 1H), 7.89 (d, J = 6.6 Hz,1H),7.74(D,J = 6.2 Hz,1h),7.52(t,j = 7.8 Hz,1H),7.48 - 7.43(M,1H),7.38(T,t,j = 7.0 Hz,3h),7.22 - 7.22 - 7.16(M,3H)(M,3H),7.10(M,D,D,D,J = 8.2 Hz,1H)。 ; 13 C NMR(101 MHz,DMSO-D6)δppm:164.21,162.12,143.43,142.39,134.62,133.92,132.70,131.77,131.40,131.40,131.40,131.14 122.89,122.39,121.81,121.75,120.61,111.13,110.43,102.35。 GC/MS(M/Z):计算。 在C 27 H 16 N 4 O:412.5;发现:412.1。 肛门。 计算。 C 27 H 16 N 4:C 78.63,H 3.91,n 13.58%;发现:C 78.56,H 3.88,n 13.67%。 1.3。 4CNCZOXD的合成途径。NC方案S2。3CNCZOXD的合成路线。O -FoxD(0.50 g,2.08 mmol),(9 H)-Carbazole-3-碳硝基(0.48 g,2.50 mmol)和K 2 CO 3(1.44 g,10.41 mmol)在Dimethyl sulfoxide(5 mL)(5 mL)中被搅拌150 o c,在Dimethyl SulfoxiDe(5 mL)中均可搅拌24 h H in an an an an an an an an an an an an an an an an an an an an an an an an an an an n hh in an an an an an n h。冷却至室温后,将混合物倒入水中,过滤,然后用柱色谱法纯化硅胶,用二氯甲烷/石油醚作为洗脱液,作为负担白色的固体(收率:75%)。1 H NMR (400 MHz, DMSO-d6) δ (TMS, ppm) 8.90 (s, 1H), 8.49 (d, J = 6.6 Hz, 1H), 8.40 (d, J = 9.0 Hz, 1H), 8.01 (t, J = 7.8 Hz, 1H), 7.97 – 7.92 (m, 1H), 7.89 (d, J = 6.6 Hz,1H),7.74(D,J = 6.2 Hz,1h),7.52(t,j = 7.8 Hz,1H),7.48 - 7.43(M,1H),7.38(T,t,j = 7.0 Hz,3h),7.22 - 7.22 - 7.16(M,3H)(M,3H),7.10(M,D,D,D,J = 8.2 Hz,1H)。; 13 C NMR(101 MHz,DMSO-D6)δppm:164.21,162.12,143.43,142.39,134.62,133.92,132.70,131.77,131.40,131.40,131.40,131.14 122.89,122.39,121.81,121.75,120.61,111.13,110.43,102.35。 GC/MS(M/Z):计算。在C 27 H 16 N 4 O:412.5;发现:412.1。肛门。计算。C 27 H 16 N 4:C 78.63,H 3.91,n 13.58%;发现:C 78.56,H 3.88,n 13.67%。1.3。4CNCZOXD的合成途径。
apocynaceae是一种富含生物碱的植物家族,据报道其许多物种具有药用意义。来自菲律宾的特有植物,Alyxia linearis Markgr。- 尚未因其植物化学和生物活性而受到调查。这项研究旨在表征植物化合物,并评估曲霉曲霉的抗菌,细胞毒性和遗传毒性活性。对根,树枝和叶的己烷,二氯甲烷和甲醇提取物进行不同的测试。研究了四种细菌(S. Aureus,P。铜绿假单胞菌,E。Faecalis和E. coli)和两个真菌(Penicillumsp。和A. Niger)。抗菌分析表明,在九种提取物中,只有两种提取物对所使用的革兰氏阳性细菌表现出部分抑制活性,只有一种提取物表现出杀真菌活性。ATD抑制了金黄色葡萄球菌和粪肠链球菌的生长,而ARM仅抑制了粪肠球菌的生长。在九种提取物中,只有ARD抑制了阴茎生长。使用Allium CEPA测定法测试了提取物的遗传毒性。除1 ppm alm以外,线性曲霉的半极化和极性提取物都是遗传毒性的。使用人类皮肤成纤维细胞新生儿(HDFN)的MTT分析评估ALD提取物的细胞毒性。与阿霉素的IC 50相比,ALD对HDFN的细胞毒性对HDFN的评估显示出低于12.5 µg/ml的IC 50,即2.89 µg/ml。这表明与阿霉素相比,ALD提取物是中度细胞毒性的。线性曲霉提取物的植物化学成分主要被分类为酚,类黄酮,类固醇和三萜),其中略有出现香豆素,蒽醌和人类。
使用标准方法分析了植物的植物,矿物质和抗菌活性的叶片提取物。植物化学成分揭示了单宁在用于提取的所有溶剂系统中的存在。生物碱和苯酚存在于二氯甲烷,乙酸乙酯,甲醇和水提取物中,但在乙醇提取物中不存在。类黄酮,心脏糖苷和皂苷存在于水性和乙醇提取物中。萜类化合物在水中不存在,但存在于其他溶剂中。近端成分显示碳水化合物的含量最高21.24%,蛋白质:21.10%,光纤:18.40%,灰分:17.82%,而脂质和水分含量分别为11.94%和9.5%。The mineral composition in the leaf showed the contents (mg/g) as in order of Ca: 7.3303mg/g>K: 2.3297mg/g>Na: 1.3327mg/g>Mg: 0.7427mg/g>Fe: 0.6234mg/g>Mn: 0.2344mg/g>Cu: 0.0555mg/g>Zn: 0.0435mg/g> cr:0.0330mg/g> pb:0.0198mg/g> ni:0.0054> CD:0.0022mg/g PPT/DCM/HP,FILT/DCM/HP,ETOA/HP,ETOA/HP和MTH/HP提取物在Steps/hp提取敏感的甲基。抵抗葡萄球菌的圆锥和acinetocter sp。在20mm,20mm,20mm,20mm和22mm的四(4)提取物中,金黄色葡萄球菌的四(4)个提取物以及提取物和提取物,PPT/DCM/HP(24mm),filt/dcm/dcm/dcm/dcm/hp(20mm)和ppt/hp/hp/hp/hp/hp/hp/hp/hp/hp/hp/hp/hp/hp/hp/hp/hp/hp/hp/ppt/ppt/ppt/ppt/ppt/ppt and/ppt and/ppt(hp) ACINETOBACTER SP。结果表明,叶提取物在人体代谢系统中起重要作用
炎症是对不同刺激的复杂,自然的保护反应,其特征是血管扩张和渗透,而血管中的白细胞激增。目前的治疗方法涉及使用抗炎药,皮质类固醇和非甾体类抗炎药(NSAID),这些药物与不良副作用有关,尤其是胃肠道溃疡。因此,越来越需要探索药用植物的替代来源。在本研究中,我们研究了使用体内和硅分子对接的肯尼亚叶子叶片叶片的抗炎活性。基于DNA条形码进行植物样品的分子鉴定。粗提物,并分别使用Folin-Ciocalteu和氯化氯化铝colori公制方法对总酚类和类黄酮进行了初步鉴定。carlageenan诱导的PAW水肿的经典模型用于测试提取物的体内抗炎活性。使用激光拉曼光谱和液相色谱质谱法(LC-MS)筛选提取物,以及通过分子停靠物进行的环氧酶-2(COX-2)的结合位点所鉴定的化合物之间的分子相互作用,该化合物是通过分子停靠物进行的,作为In Vivo实验的确认工具。基于DNA条形码分析,将植物样品鉴定为尿布种。水提取物显着(p <0.05)减少了炎症的角叉菜胶模型中的爪水肿。这些发现暗示了尿布sp。水和甲醇的总酚类含量:二氯甲烷提取物为3.75 mg食酸等效物(GAE)/G干燥样品和6.26 mg GAE/G干燥样品,而总黄酮类含量为0.3872 mg槲皮素/g干样样品和1.76 mg quercetin/g dryplice/g drame cribetin/g drame含量。LC-MS证实了19种植物化学物质的存在,其中10和9是酚类和类黄酮化合物。与这些鉴定的化合物槲皮素与COX-2复合时达到了最低的结合能,其次是鼠李糖蛋白,Quer cetin rhamnoside,epigallocatechin Gallate和氯酸酸。分子对接研究支持了体内发现,并确认了尿布sp的抗炎潜力。是可以在