着色性干皮病 (XP) 是一种由核苷酸切除修复 (NER) 途径(AG 组)或跨损伤合成 DNA 聚合酶 η (V) 基因突变引起的遗传性疾病。XP 与皮肤癌风险增加有关,对于某些群体来说,与一般人群相比,风险可高达数千倍。在这里,我们分析了来自五个 XP 组的 38 个皮肤癌基因组。我们发现 NER 的活性决定了皮肤癌基因组间突变率的异质性,并且转录偶联的 NER 超越了基因边界,降低了基因间突变率。XP-V 肿瘤中的突变谱和使用 POLH 敲除细胞系的实验揭示了聚合酶 η 在无错误绕过(i)罕见的 TpG 和 TpA DNA 损伤、(ii)嘧啶二聚体中的 3' 核苷酸和(iii)TpT 光二聚体中的作用。我们的研究揭示了 XP 皮肤癌风险的遗传基础,并对减少一般人群中紫外线诱发的突变的机制提供了见解。
图1各种基因组编辑工具。(a)锌指核酸酶(ZFN)充当二聚体。每个单体由DNA结合结构域和核酸酶结构域组成。每个DNA结合结构域由3 - 6个锌指重复序列组成,识别9 - 18个核苷酸。核酸酶结构域由II型限制性核酸内切酶FOK1组成。(b)转录激活剂类似核酸酶(Talens):这些是类似于ZFN的二聚体酶。每个亚基由DNA结合结构域(高度保守的33 - 34个氨基酸序列)和FOK1核酸酶结构域组成。(c)CRISPR/CAS9:CAS9核酸内切酶由SGRNA(单引导RNA:CRRNA和TRACRRNA)引导,用于靶特定裂解。二十个核苷酸识别位点存在于原始基序(PAM)的上游(来自Arora&Narula,2017年)。版权所有©2017 Arora和Narula。这是根据Creative Commons归因许可(CC BY)的条款分发的开放访问文章。
引言乳腺癌(BC)是最常见的癌症,与全球女性最与癌症相关的死亡人数最多。bc发生在青春期后的所有年龄段的女性中。在2022年,有230万妇女被诊断出患有卑诗省的妇女,在全球范围内造成约670,000人死亡1。尽管在早期检测和治疗BC方面取得了进展,但转移,但显着使治疗复杂化,并且仍然是癌症相关死亡的主要原因2,3。转移是指癌细胞从原发性肿瘤部位扩散以在不同解剖部位建立的过程2。这些扩散的细胞很难治疗,快速生长,并且会导致在转移部位4的器官衰竭。因此,了解驱动BC转移的详细分子机制对于制定更有效的治疗干预措施至关重要。α-微管蛋白的乙酰化是一种与BC进展和转移3,5-7相关的机制。 这是一种翻译后修饰(PTM),通常发生在α-微管蛋白的赖氨酸40上,这是一种与β-微管蛋白二聚体的关键蛋白。 这些异二聚体是在5,8细胞中形成微管(MTS)聚合以形成微管(MTS)的构件。 PTM,例如乙酰化和驱虫率与癌症的细胞转化有关9。 例如,α-微管蛋白的乙酰化已被证明可以增强细胞的附着,迁移和重新分析,从而为转移势7提供选择性优势7。α-微管蛋白的乙酰化是一种与BC进展和转移3,5-7相关的机制。这是一种翻译后修饰(PTM),通常发生在α-微管蛋白的赖氨酸40上,这是一种与β-微管蛋白二聚体的关键蛋白。这些异二聚体是在5,8细胞中形成微管(MTS)聚合以形成微管(MTS)的构件。PTM,例如乙酰化和驱虫率与癌症的细胞转化有关9。例如,α-微管蛋白的乙酰化已被证明可以增强细胞的附着,迁移和重新分析,从而为转移势7提供选择性优势7。这些修饰通常与癌症的结果不良和增强的转移能力相关,这为将其定为潜在治疗剂的基本原理7,9。该新闻通讯将探讨α-微管蛋白乙酰化在BC转移中的作用,其生物学意义及其治疗潜力。
摘要 将干扰素处理过的细胞的细胞质提取物与双链 RNA 和 ATP 一起孵育,可形成一种低分子量的无细胞蛋白质合成抑制剂,其有效浓度为亚纳摩尔。通过将来自此类细胞的 poly(I)poly(C)-Sepharose 结合酶级分与 [:IH 或 [a- 或 y-32P]ATP 一起孵育,可方便地合成该抑制剂。该放射性抑制剂的特征在于其在尿素存在下在 DEAE-Sephadex 上的行为,以及在酶、碱和高碘酸氧化和 ft 消除的顺序降解中获得的产物。其结构似乎是 pppA2'p5'A2'p5'A。除了 2'-5' 键之外,我们没有发现任何其他修改或异常的证据。有时抑制剂制剂似乎包括相应的二聚体 (pppA2'p5'A)、四聚体 [ppp(A2'p)3A]、五聚体 [ppp(A2'p)4A],以及数量逐渐减少的高级寡聚体。三聚体、四聚体和五聚体的活性相似,但二聚体的活性较低,即使有活性。
水平基因转移是细菌进化的关键驱动力,但它也通过引入侵入性的移动遗传元素给细菌带来了严重的风险。为了应对这些威胁,细菌开发了各种防御系统,包括原核生物Argonautes(Pago)和DNA防御模块DDMDE系统。通过生化分析,结构测定和体内质粒清除分析,我们阐明了DDMDE的组装和激活机制,从而消除了小型多拷贝质粒。我们证明了一种类似pago的蛋白DDME充当催化性,DNA引导,靶向DNA靶向防御模块。在存在引导DNA的情况下,DDME靶向质粒并募集二聚体DDMD,其中包含核酸酶和解旋酶结构域。与DNA底物结合后,DDMD从自身抑制的二聚体转变为活性单体,然后沿着并裂解质粒。一起,我们的发现揭示了DDMDE介导的质粒清除的复杂机制,从而为针对质粒入侵的细菌防御系统提供了基本见解。
ARAF,丝氨酸/苏氨酸蛋白激酶 A–快速加速纤维肉瘤;ATP,三磷酸腺苷;AUC,浓度时间曲线下面积;AUC 0–last,从时间 0 到最后测量浓度的 AUC;BCRP,乳腺癌耐药蛋白转运蛋白;BID,每日两次;BRAF,v-Raf 鼠肉瘤病毒致癌基因同源物 B1;CNS,中枢神经系统;CRAF,丝氨酸/苏氨酸蛋白激酶 C-Raf;CSF,脑脊液;DFG,天冬氨酸-苯丙氨酸-甘氨酸;DMSO,二甲基亚砜;ELISA,酶联免疫吸附试验;ERK,细胞外信号调节激酶;GTP,三磷酸鸟苷;hrs,小时;IC 50,半数最大抑制浓度; Kp uu,非结合分配系数(游离脑浓度/游离血浆浓度);KRAS,Kirsten RAS;M,摩尔;MDR1,多药耐药突变转运体;MEK,丝裂原活化蛋白激酶激酶;NRAS,神经母细胞瘤 RAS;PERK,蛋白激酶 R 样内质网激酶;PK,药代动力学;po,口服;pRSK,磷酸化 RSK;QD,每日一次;RAF,快速加速性纤维肉瘤;RAS,大鼠肉瘤小 GTPase 蛋白;RSK,核糖体 s6 激酶;SEM,均值标准误差;t 1/2,半衰期;TGI,肿瘤生长抑制;T. sol,热力学溶解度;WT,野生型。
摘要:从历史上看,腺相关病毒(AAV) - 缺陷干扰颗粒(DI)被称为异常病毒,由自然复制和封装误差引起。通过单个病毒粒子基因组分析,我们揭示了主要类别的DI颗粒在“快回背”配置中包含双链DNA基因组。5' - 反向基因组(SBG)包括P5启动子和部分REP基因序列。3'-sbgs包含衣壳区域。从理论上讲,5'-SBG的分子构构可能允许在其二聚体配置中双链RNA转录。我们的研究表明,5-SBG调节AAV REP表达并改善了AAV包装。相比之下,其二聚体配置处的3'-sbgs增加了帽蛋白的水平。5'-SBG和3'-SBG的产生和积累似乎是协调的,以平衡病毒基因表达水平。因此,5'-SBG和3'-SBG的功能可能有助于最大程度地提高AAV后代的产量。我们假设AAV病毒群体表现为菌落,并利用其亚基因组颗粒来克服病毒基因组的大小极限并编码其他基本功能。
摘要:NFIX是转录因子的核因子I(NFI)家族的成员,已知与肌肉和中枢神经系统胚胎发育有关。但是,其在成年人中的表达受到限制。与其他发育转录因子类似,已发现NFIX在肿瘤中发生了改变,通常会促进促肿瘤功能,例如导致增殖,分化和迁移。然而,一些研究表明NFIX也可以具有肿瘤抑制作用的作用,表明NFIX具有复杂且癌变的依赖性作用。这种复杂性可以与调节NFIX的多个过程有关,其中包括转录,转录后和翻译后过程。NFIX的其他特征,包括其与不同NFI成员形成同型二聚体或异二聚体的能力,因此允许转录不同的靶基因,以及其感知氧化应激的能力,也可以调节其功能。在这篇综述中,我们检查了NFIX调节的不同方面,首先是发育中,然后研究了癌症,强调了NFIX在氧化应激中的重要作用和肿瘤中细胞命运调节的重要作用。此外,我们提出了不同的机制,氧化应激调节NFIX转录和功能,将NFIX作为肿瘤发生的关键因素。
自旋梯子最近引起了很多关注,特别是由于超导性在SR 14 x Ca x Cu 24 O 41(SCCO)的压力下观察到的超导性,x 11:5 [1]。scco包含2 -legs¼12 cu 2 o 3梯子,显示一个较大的自旋差距D梯子E 400 K [2]和S¼12 CuO 2链,均沿C轴延伸。它是“自兴”,每个配方单元6个孔。对于x¼0,几乎所有孔都位于链中,并显示准2d顺序[3,4]。在此电荷中,有差距D二聚体E 130 K的有序状态旋转二聚体通过局部孔之间形成了下一个最邻居的CU旋转[3,4]。SCCO的电导率随X:主要的视点是,由于CA兴奋剂引起的化学压力导致从链到梯子的大量孔转移[5],即金属电导率和超电导率均构成了梯子。但是,最近的X射线吸收数据仅表示边缘