通过人工图案化的各向异性材料(例如介电交代面)的光传播,可以使用高度跨父,薄的和平坦的光学元素来精确控制光场的空间 - 矢量性能。液晶细胞是这种设备的常见实现。光损失通常被认为是偏振依赖性的,因此经常在对这些系统进行建模时经常看到。在这项工作中,我们将带有图案性双重双重和二色性的电液晶元质体引入,通过将二甲状腺染料分子掺入液 - 晶体混合物中来实现。这些染料分子与液晶,有效的耦合双发性和二色性效应对齐。使用非单身琼斯矩阵描述了这些跨度的行为,并通过极化测量验证。在形成形成形成极化光栅的depitices的情况下,我们还表征了衍射效率,这是二分法和双发性参数的函数,可以通过在整个细胞上施加电场来共同调谐。这项研究不仅引入了一类新的光学成分,而且还加深了我们通过各向异性材料对光传播的理解,在这些材料中,二色性可以自然地来自散装材料的特性,或者来自其接口处的反射和传播定律。
摘要 我们报告了二氨基类固醇 irehdiamine A 与 DNA 复合物的平衡、松弛动力学和瞬态电二色性研究。结果与复合物在饱和状态下的 j# 扭结结构一致,每隔一个碱基对结合的类固醇会导致 DNA 结构扭结。支持这一假设的结果包括,当只有少量药物结合时,棒状细菌 DNA 分子的表观长度会减少,然后在饱和状态下表观长度会增加。极限二色性幅度意味着碱基相对于取向轴的倾斜度大幅增加;在饱和状态下,碱基 UV 跃迁矩与垂直于取向轴的平面倾斜约 310°。由于 260 纳米跃迁矩的偏振方向,结果表明碱基的倾斜度必须主要在碱基对的短轴而不是长轴上。复合物的显著增色与碱基堆积作用的丧失相一致,这是扭结结构所要求的。动力学结果暗示了一种双分子反应机理,其结合速率常数与温度有关,约为 108 M-' sec-1,解离速率常数约为 5 X 103 sec1I,几乎与温度无关。结合活化能和表观反应焓从 12 到 22 kcal mol-' 不等;正如碱基堆积作用丧失所预期的那样,复合物形成时会吸收热量。实验的一个异常结果是,两种真核 DNA 表现出更大的表观长度增加 (13%),而三种原核 DNA 的长度增加仅为 6%。复合物的动力学性质也存在差异。
图1 |手性卤化物钙钛矿的光学和自旋表征的示例[1]。(S -HP1A)2 PBBR 4的晶体结构,具有4 3和4 1对称元素的插图。b(S -HP1A)2 PBBR 4和(R -HP1A)2 PBBR 4的薄膜的圆形二色性和 - s斑谱光谱。C磁性原子力M- croscopy(MC-AFM)测量的示意图。 d在(S -HP1A)2 Pbbr 4(红色)和(R -HP1A)2 PBBR 4(蓝色)中的自旋极化的平均值。C磁性原子力M- croscopy(MC-AFM)测量的示意图。d在(S -HP1A)2 Pbbr 4(红色)和(R -HP1A)2 PBBR 4(蓝色)中的自旋极化的平均值。
§近场成像:在包括拓扑绝缘子和黑色磷(包括拓扑绝缘子和黑磷)中研究远红外极性子。她已经开发了基于THZ量子级联激光器(单模,随机,频率梳)的新型近场成像方法,可实现用于台式源的记录频谱覆盖率(不是基于FEL或同步器),从而使精液的进步使THZ表面波浪理解。§超快光谱:研究石墨烯的光学特性,半导体的二维晶体及其范德华异质结构,以及最近的非线性介电元面。她已经开发了最新的设置,用于瞬时吸收,时间分辨的光致发光,时间分辨的法拉第旋转,时间撤销的圆形二色性和时间分辨的第二谐波产生。
我们提供了一个基于经典电磁学的理论框架,以描述Fabry-Pérot腔的光学特性,并用多层和线性手性材料填充。我们发现了转移 - 矩阵,散射矩阵和绿色功能方法之间的正式联系,以计算依赖极化的光学传播和空腔模型的圆形二色性信号。我们展示了诸如洛伦兹的互惠和时间反向对称性之类的一般对称性如何限制此类腔的建模。我们采用这种方法来通过数值和分析研究,由金属或螺旋性的介电光子晶体镜制成的各种Fabry-Pérot腔的特性。在后一种情况下,我们根据在镜面界面上反映的电磁波的部分螺旋性保存分析了手性腔极性的发作。我们的方法与设计创新的Fabry-Pérot腔有关手性传感和探测腔体模化的立体化学相关。
这项工作研究了铜下机构对由分子束epy纳税合成的SMCO 5薄膜的磁性特性的影响。在与磁性相同的结构和组成效应的情况下,在相同的条件下生长了一系列具有不同Cu的薄膜。合并的实验和口学研究表明,CO 3 g位点的Cu取代不仅稳定了SMCO 5结构的形成,还可以增强磁各向异性和矫正性。密度功能理论计算表明,SM(CO 4 Cu 3 G)5具有较高的单离子各向异性,作为纯SMCO 5。此外,X射线杂志 - 网络二色性均表明,Cu取代会导致SM 4 F和CO 3 d矩的脱钩。扫描传输电子显微镜证实主要是SMCO 5相的形成,并揭示了Cu和CO分布中的纳米级不均匀性。我们的研究基于薄膜
手性分子的准确检测,分类和分离是推进药物和生物分子创新的关键。设计的手性光提出了一种有希望的途径,以增强光与物质之间的相互作用,从而提供一种无创,高分辨率和具有成本效益的方法来区分对映异构体。在这里,我们提出了一个基于ACHIRAL等离子体系统的纳米结构平台,用于表面增强红外吸收吸收诱导的Vi-Brational圆形二色性(VCD)。该平台可以对对映体混合物的精确度量,分化和量化,包括浓度和对映体的多余确定。与常规的VCD光谱技术相比,我们的手性对映异构体的检测灵敏度高13个数量级的检测敏感性,这是相应的路径长度和浓度。该刺激性等离子体系统的可调光谱特性促进了多种手性化合物的检测。平台的简单性,可调节性和出色的灵敏度具有在药物设计,药物和生物应用中分类的巨大潜力。
椭圆法是一种非接触,无损的光学表征技术,可在通过样品反射或传播反射或传输后测量光的偏振变化。样品引起的极化变化通常报告为各向同性样品的ψ和∆。但是,广义和穆勒矩阵椭圆法不限于测量膜厚度和光学常数是主要兴趣的各向同性样品。通过测量Mueller矩阵,我们可以表征最先进的材料。一些例子包括任意各向异性,晶体底物和膜,在卷到滚动应用中发现的拉伸聚合物箔中的双折射,AR/VR设备中的极化过滤器,整个液晶细胞中的极化过滤器,整个液晶细胞,方向的纳米结构,方向的纳米结构,变质,或定期3D材料。Mueller矩阵包含所有必需的光学信息,包括强度传播,由于线性和圆形双发性,线性和圆形二色性以及相位迟缓而引起的交叉极化。本质上,Mueller矩阵将描述任何可能的光学效果。
摘要手学特性的多方面调节和手性荧光聚合物的自组装行为具有很大的意义,但仍然具有挑战性。本文是一系列具有聚合诱导的发射和各种替代方式的新型基于沙质的手性聚合物,并有效地合成了。有多个因素在这些聚合物的旋转特性和自组装性能上进行了系统研究,其中包括分子结构,溶剂环境,金属协调和液体crys-tall(LC)组件。sutle变化可以导致所有这些手性聚合物的组装形态,从而导致聚集降低的圆形二色性(CD)现象。与Zn 2 +的聚合物携带的聚合物表现出高度选择性和可逆的协调性,并且还可以通过协调和分离的启发性自我调节来诱导这些chirallal荧光聚合物的吸收,发光,CD和圆形极性发光(CPL)。此外,少量的循环聚合物可以诱导夜间列4-甲基-4' - n- n-苯基苯基苯基(5CB),以形成有序的手胸腔nematic Lc相,其CD和CPL信号中有显着的改进。所得超分子组件的绝对吸收和发光的非对称因子可以达到10 - 1的阶。
在过渡金属氧化金属异质结构的界面处的相关性和电子重建的摘要为调整其独特的物理特性提供了新的途径。在这里,我们研究了界面非色化和垂直相分离对磁性特性的影响,以及外部上马la 0.7 SR 0.7 SR 0.3 MNO 3(LSMO)/SRTIO 3(001)氧化物氧化物异构结构的接近性诱导的磁性。我们还重新分辨了该系统报告的最近观察到的逆滞后行为,我们发现,这些行为是从超导螺线管的remanent fird中提出的,而不是从低稳态的LSMO lsmo thin-films中的抗铁磁内交换偶联。结合了原子解析的电子能损失光谱,元素特异性X射线磁性圆形二色性和界面敏感的极化X射线谐振磁磁反射性显示Mn 3 + - 增强的互化lsmo层的形成。 MNO 3,以及界面处的少量O-VACACANCES。这些结果不仅可以提高对相关氧化物界面的磁性和自旋结构的理解,而且还对实际应用有望,尤其是在性能依赖于界面自旋结构控制和旋转极化电流的设备。