在存在外部电气和量化磁场以及接近度诱导的交换相互作用的情况下,我们从理论上研究了单层(ML)过渡金属二核苷(TMD)的磁光(MO)性质。通过求解Schr odinger方程来研究相应的Landau水平(LL)结构,并评估ML-TMD的自旋极化在磁场的作用下。此外,在标准的随机相近似(RPA)中,纵向MO电导率是通过动力学介电函数计算的。我们以ML-MOS 2为例,以检查接近诱导的交换相互作用的影响,外部电气和磁场对通过LLS之间的内部和带电子过渡引起的MO电导率。对于传导或价带中的内标电子过渡,我们可以观察到Terahertz(THZ)频率范围的两个吸收峰。虽然传导和价LL之间的带电子间过渡显示可见范围内的一系列吸收峰。我们发现,接近度诱导的交换相互作用,载体密度,外部电气和磁场的强度可以有效地调节吸收峰的位置以及MO吸收光谱的形状。从这项研究中获得的结果可以使人们对ML-TMD的MO性质有深入的理解,这些理解可能可用于可见在THZ频率带宽方面的磁光,旋转和valleytronic设备。
电荷尺度数字对模拟转换器的准确性和性能(DACS)(图1(a))取决于二进制加权电容器比率,这可能会受到MIS匹配的干扰。关键因素是电容器阵列中单位电容器C U的选择。由于n位二进制加权DAC使用2 N单位电容器来提供所需的电容器比率,其面积,总电容和功率用n呈指数增加。选择较小的C u会降低阵列的大小并减少沉降时间,这是因为电容器充电/排放电容器的较低时间常数。但是,较小的C U导致更大的随机不匹配和线性问题。在文献中,经常在经验上选择C U。在[1]中尝试确定最小C U的系统方法,但模型是建立在较旧的散装技术节点上的,而忽略了电线寄生虫和随机变化的影响;特别是在FinFET节点中,这些效果可能很重要。此外,它们无视对关键DAC线性指标的影响。在[2]中,研究了寄生能力的某些组成部分对增益误差和热噪声的影响,但是该工作并未探索一种发现C U的方法。我们提出了一种系统的方法,用于查找最佳的单位电容,C u,该方法考虑了系统的和随机变化,电线寄生虫,频噪声,热噪声和电路级性能指标,包括线性。