有机发光二极管研究面临的挑战之一是利用电致发光过程中不可避免产生的三线态激子来提高器件效率。其中一种方法是通过热激活延迟荧光,即单线态激子向上转换为单线态,使其辐射松弛的过程。这一现象的发现引发了对能够有效利用这一机制的新材料的探索。从理论的角度来看,这需要能够估计候选分子光物理中涉及的各种过程的速率,例如系统间窜改、反向系统间窜改、荧光和磷光。我们在此提出一种方法,能够在单一框架内计算所有这些速率并预测新分子的光物理。我们将该方法应用于两个 TADF 分子,并表明结果与其他理论方法和实验结果相比更具优势。最后,我们使用动力学模型来展示计算速率如何协同作用产生不同的光物理行为。
近年来,超连续光源和各种新型光纤或波导的超高灵敏度得到了广泛的研究,结合光纤低损耗传输、抗电磁干扰等独特性能,发展了各种光子调制和集成的全光传感器件,为平面波导与光纤波导的集成提供了可能的技术途径( Kosiel et al.,2018 )。得益于新型智能材料、纳米加工技术和光谱分析技术的发展,人们开发了许多智能、高性能的光波导器件或光纤传感器,其中,智能聚合物、金属、金属氧化物和半导体材料已被用于制作光纤传感器或作为敏感材料,有效提高了灵敏度和选择性能( Yuan et al.,2019 )。这一改进是通过修改不同的光纤结构实现的,例如微光纤、纳米光纤、光纤尖端微/纳米结构、多模干涉光纤结构和直列光纤结构。微/纳米尺度的光纤传感器已经与微流控器件和平面光子结构集成以开发全光学芯片,从而实现传感信号的高速采集、传输和处理。由于光纤传感器被封装在柔性材料中,它们将成为可穿戴或植入式设备的有希望的候选者。将微/纳米纤维的优异性能(超高倏逝场)与这些传感器中使用的新型纳米材料(高比表面积和催化活性)相结合,开发出许多性能优异的集成光学传感器。在本研究主题中,报道了基于新型智能材料的光纤传感器的结构设计、器件制备和传感性能优化的模型模拟和实验研究的最新研究工作。光学微纳光纤和微纳结构的灵活设计与精确控制是发展先进光子器件和新型传感器的重要支撑,也被称作“光纤实验室”( Zhou et al., 2019 )。廖博士等在题为“双光子聚合诱导的光纤集成功能微纳结构”的论文中回顾和讨论了近10年来双光子聚合诱导的光纤集成微纳结构领域的研究进展。利用激光微加工、聚焦离子束铣削和纳米压印技术,在光纤端面制作出超小型、微型微光学元件、光波导器件和光学微腔,分辨率小于100纳米。将“双光子聚合”技术与新的加工方法或材料相结合,新的功能结构一直致力于开发新型纳米光子学设备,例如光纤实验室。
Joyce KS Poon、c、d 和 Michael L. Roukes a、b、∗ a 加州理工学院,物理、数学和天文学分部,美国加利福尼亚州帕萨迪纳市 b 加州理工学院 Kavli 纳米科学研究所,美国加利福尼亚州帕萨迪纳市 c 多伦多大学,电气与计算机工程系,加拿大安大略省多伦多市 d 马克斯普朗克微结构物理研究所,德国哈雷市 e 大学健康网络,Krembil 研究所,临床和计算神经科学分部,加拿大安大略省多伦多市 f 先进微铸造有限公司,新加坡 g 新加坡科技研究局(A*STAR),微电子研究所,新加坡 h 多伦多大学,多伦多西部医院,神经外科分部,外科部,加拿大安大略省多伦多市 i 多伦多大学,生物材料与生物医学工程研究所,加拿大安大略省多伦多市
减少环境污染并改善温室效应。有两种用于太阳能光伏生成的操作模式:独立的光伏电源系统由光伏阵列,电池和负载组成,而网格连接的光伏电源系统由光伏阵列和特殊技术逆转器组成。独立的光伏系统将根据当前状态和开发趋势来长期使用太阳能光伏电源,尽管光伏电网连接系统。在远程或孤立的区域中,电网无法扩展到图1所示的独立光伏方案,已经找到了相当宽的应用,以满足对低但必不可少的电力的需求。根据控制举止,独立光伏电源系统可以分为两类:一个是On-Off直接控制系统,另一个是带有DC-DC转换器的控制系统,分别以DC-DC转换器为单位。这些系统具有简单的结构和控制单元,并且具有从太阳能电池中存储剩余能量的优点。但是,它们的缺点也很明显:首先,电池连接到直流总线,其电压随电池电压而波动;其次,没有对电池充电和放电的控制权,这可能会导致大量充电电流并缩短电池的持续时间。第三,对于On-Off直接控制系统。同时进行电荷开关K1和放电开关K2时,太阳能电池,电池和直流负载均平行连接。在这种情况下,太阳阵列中的太阳能电池的数量高度取决于电池串联中电池电池的数量。例如,一个17V的太阳能电池阵列可与12V电池电池充分发挥作用。当太阳能辐射降低到如此之高,以至于太阳阵列的输出电压低于电池电压时,太阳能电池阵列没有输出功率,太阳能会丢失。
量子信息利用独立和纠缠的量子系统来执行一系列信息处理任务,这比传统系统更具优势 [1]。量子通信是量子信息的一个主要分支,其目的是通过通信链路(光纤或自由空间信道)在远程方(通常称为 Alice 和 Bob)之间忠实地传输光子量子态 [2]。量子密钥分发 (QKD) 是一种重要的量子通信协议,其目标是在 Alice 和 Bob 之间远程生成共享密钥 [3-5]。其有效性已在长距离上得到证实 [6],这对于实际应用来说是理想的。过去,大多数量子通信实验都集中在点对点应用上,直到最近,人们对网络和多用户应用的兴趣才有所增加,并将大量精力集中在支持未来量子计算机网络的底层通信基础设施上,即所谓的量子互联网 [7]。与标准通信网络一样,路由将是实现单光子动态功能的一项基本功能。实现具有潜在快速响应时间的单光子路由器的直接方法是使用干涉仪 [8 – 11]。在 [8] 中,使用在其一条臂中带有相位调制器的马赫-曾德尔干涉仪 (MZI) 将单光子按需路由到其一个输出。基于 MZI 设计的具有两个输入和两个输出的单光子开关也已提出 [9]。在 [10] 中,还提出了一种基于 MZI 的耦合器,其中光子可以作为可调开关以任何分光比路由。在这些论文中,提出了三种路由配置,由于使用 MZI,所有这些配置都需要额外的主动相位稳定系统。为了获得更稳定的设计,另一种配置采用了 Sagnac 光纤
2. 原子-腔光物质界面 5 2.1. 动机和结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...非相干过程 . ...产生的复杂光子模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.6.1. 弱相干脉冲 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 47
本作品部分由美国国家可再生能源实验室撰写,该实验室由可持续能源联盟有限责任公司运营,为美国能源部 (DOE) 服务,合同编号为 DE-AC36-08GO28308。资金由美国能源部能源效率和可再生能源办公室太阳能技术办公室提供。本文表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留,而出版商在接受文章发表时,即承认美国政府保留非独占、已付费、不可撤销的全球许可,可以出于美国政府目的出版或复制本作品的已出版形式,或允许他人这样做。
本作品部分由美国国家可再生能源实验室撰写,该实验室由可持续能源联盟有限责任公司运营,为美国能源部 (DOE) 服务,合同编号为 DE-AC36-08GO28308。资金由美国能源部能源效率和可再生能源办公室太阳能技术办公室提供。文章中表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留,而出版商在接受文章发表时,承认美国政府保留非独占、已付费、不可撤销的全球许可,可以出于美国政府目的出版或复制本作品的已出版形式,或允许他人这样做。
过去十年,增材制造(又称光聚合 3D 打印)取得了显著进步,使修复牙科的数字化制造成为可能。[1] 如今,3D 打印在牙科领域的应用包括牙科模型、手术导板、透明矫正器、夜间护齿器和夹板。[2,3] 构建精度和资源效率都得到了提高。[4] 立体光刻、数字光处理 (DLP) 和连续液体界面生产等现代 3D 打印技术利用了光聚合,并使用在紫外线照射下发生自由基链增长聚合的树脂。[1] 通常,将不同的光反应性(甲基)丙烯酸酯单体混合在一起形成配方,以定制材料特性。[5] 低树脂粘度(0.1 和 1.3 Pa s)是光聚合 3D 打印应用的主要要求,而光喷射需要的粘度甚至更低,约为 0.01 Pa s。通常会添加反应性稀释剂来降低配方的粘度。[6] 此外,为了设计机械性能,还会使用(甲基)丙烯酸酯功能低聚物。它们可分为三大类,即聚酯(甲基)丙烯酸酯、丙烯酸低聚聚氨酯和环氧丙烯酸酯。[7] 配方中经常含有双酚 A (BPA) 衍生物,例如 2,2-双[4-(2-羟基-3-甲基丙烯酰氧丙基)-苯基]丙烷,也称为双酚 A 甲基丙烯酸缩水甘油酯 (BisGMA)。加入基于 BPA 的刚性芳香族结构可使材料具有高刚度和高玻璃化转变温度,而 BisGMA 的侧链羟基可使其对玻璃、骨骼或牙釉质表面具有良好的粘附性。[8] 这些特性,再加上低固化收缩率,使得 BisGMA 广泛应用于牙科修复材料和热固性材料中。 [9] 尽管如此,使用双酚 A 基树脂也应受到严格审查,因为一些结果表明,双酚 A 的释放要么来自单体杂质,要么来自聚合物降解。[10] 由于 BPA 具有类似雌激素的特性,因此使用基于 BPA 的树脂
三维 (3D) 打印目前是研发 (R&D) 部门的一个极其重要的分支。这是因为它具有快速成型、快速消除设计错误和在成型阶段改进产品等特点。这种方法大大加快了新解决方案的实施,而无需花费大量生产成本,也无需在生产中测试未开发的模型。借助 3D 打印技术,可以在短时间内以前所未有的精度制作出具有复杂几何形状的原型 [1]。制造流程的逐步计算机化将我们带入了工业 4.0 的新时代。这种级别的智能生产得益于 21 世纪人工智能、机器人技术、纳米技术和 3D 打印方面的重大突破。由于生产技术的极度定制化和个性化,工业 4.0 的实践已成为制造流程每个环节中都可以观察到的现象。人工智能(AI)算法在3D模型准备和转换中的应用显著加快了3D图形的生成速度并提高了质量。人工智能已成功应用于可打印性检查、切片加速、喷嘴路径规划以及云服务平台等[2]。行业模型的演变如图1所示。