3.系统 12 3.1.设计和配置(КиК) 12 3.2.控制/显示面板(ПУ) 30 3.3.热条件控制系统(СОТР) 43 3.4.机载综合控制系统(СУБК) 48 3.5.电源系统(СЭП) 53 3.6.对接和内部传输系统(ССВП) 57 3.7.界面增压控制辅助装置(СКГС) 63 3.8.“Rassvet” 无线电通信系统 ( СРС ) 65 3.9.“Klest” 电视系统 ( ТВС ) 72 3.10.机载测量系统 ( СБИ ) 75 3.11.“Kurs” 雷达会合系统 ( PTCC ) 77 3.12.光学视觉辅助设备 ( ОВС ) 82 3.13.生命支持物品综合体 ( КСОЖ ) 88 3.14.“Sokol-KB-2” 太空服 ( СКФ ) 95 3.15.运动控制系统 ( СУД ) 100 3.1 5.1 .СУД 系统 – 轨道飞行 ( СУД -O П ) 103 3.1 5.2。СУД 系统 – 交会 ( СУД - СБ ) 113 3.16。下降控制系统 ( СУС ) 117 3.17。组合推进系统 ( КДУ ) 122 3.18。下降反应控制系统 (C ИО - С ) 130 3.19。着陆辅助系统 ( КСП ) 134 3.20。发射逃生系统 ( САС ) 137 3.21。着陆后救生包 ( НАЗ ) 141
美国宇航局和欧空局已将 LiDAR 确定为实现安全精确着陆和交会对接的关键技术。此外,该技术对于难以观察到背景辐射的未来卫星任务和探测车应用至关重要。挑战来自任务参数的限制越来越严格。太空市场普遍倾向于低成本、高可靠性的紧凑型解决方案,而目前的 LiDAR 技术可能会在主要应用中失去相关性。ONEWeb、三星和 SpaceX 等公司的未来商业计划旨在发射总共超过 10,000 颗卫星,2019 年的概念演示任务已经开始,巩固了对这些企业的投资。LiDAR 技术非常适合清除太空垃圾等操作任务参数,但目前的 LiDAR 质量、体积、功率 (MVP) 预算、成本和开发时间在评估新太空应用提案时可能是一个挑战。当前的扫描 LiDAR 使用旋转镜来引导激光束。机械扫描导致解决方案体积庞大、速度相对较慢且耗电。该提案提出了一个项目,旨在加速开发现代一代激光雷达,以更好地适应日益增长的空间应用需求。