第 2 章。性能和发射任务 2.1。简介 2.2。性能定义 2.3。典型任务概况 2.4。一般性能数据 2.4.1。地球同步转移轨道任务 2.4.2。SSO 和极圆轨道 2.4.3。椭圆轨道任务 2.4.4。地球逃逸任务 2.4.5。 国际空间站轨道 2.5。注入精度 2.6。任务持续时间 2.7。发射窗口 2.7.1。定义 2.7.2。发射窗口定义过程 2.7.3。GTO 双发射的发射窗口 2.7.4。GTO 单发射的发射窗口 2.7.5。非 GTO 发射的发射窗口 2.7.6。发射推迟 2.7.7。升空前发动机关闭 2.8。飞行过程中的航天器定位 2.9。分离条件 2.9.1。定位性能 2.9.2。分离模式和指向精度 2.9.2.1。三轴稳定模式 2.9.2.2。旋转稳定模式 2.9.3。分离线速度和避免碰撞风险 2.9.4。多分离能力
2.7.3.GTO 双发发射窗口 2.7.4.GTO 单发发射窗口 2.7.5.非 GTO 发射窗口 2.7.6.发射推迟 2.7.7.升空前发动机关闭 2.8.上升阶段的航天器定位 2.9.分离条件 2.9.1.定位性能 2.9.2.分离模式和指向精度 2.9.2.1.三轴稳定模式 2.9.2.2.自旋稳定模式 2.9.3.分离线速度和碰撞风险规避 2.9.4。多分离能力 第 3 章。环境条件 3.1。一般 3.2。机械环境 3.2.1。静态加速度 3.2.1.1。地面 3.2.1.2。飞行中 3.2.2。稳态角运动 3.2.3。正弦等效动力学 3.2.4。随机振动 3.2.5。声振动 3.2.5.1。地面 3.2.5.2.飞行中 3.2.6.冲击 3.2.7.整流罩下的静压 3.2.7.1.地面 3.2.7.2.飞行中 3.3.热环境 3.3.1.简介 3.3.2.地面操作 3.3.2.1.CSG 设施环境 3.3.2.2.整流罩或 SYLDA 5 下的热条件 3.3.3.飞行环境 3.3.3.1.整流罩抛射前的热条件 3.3.3.2。整流罩抛射后的气动热通量和热条件 3.3.3.3。其他通量 3.4。清洁度和污染 3.4.1。环境中的清洁度水平 3.4.2。沉积污染 3.4.2.1。颗粒污染 3.4.2.2。有机污染 3.5。电磁环境 3.5.1。L/V 和范围 RF 系统 3.5.2。电磁场 3.6。环境验证
问:您的公司是如何起步的?答:东丽复合材料美国公司是东丽工业的子公司。1927 年,东丽在日本首次生产人造丝,此后业务扩展到全球,生产纤维、纺织品、化学品、复合材料等。1992 年,东丽 CMA 开始生产碳纤维复合材料,为美国航空航天公司提供高效的供应流。
面对挑战 • 主动电子波束控制和几乎即时重新定位雷达波束可实现更快的检测和更大的跟踪范围 • 具有灵活雷达资源管理的 AESA 技术将提高跟踪性能/跟踪稳健性和导弹制导能力,以应对同时多目标的情况。• AESA 的快速波束控制和高可靠性将提高战斗机的作战效率和任务可用性 • 快速电子扫描与慢速移动机械重新定位相结合,可实现宽视场操作和高态势感知
HENSOLDT Avionics 为机载平台和地面资产提供集成的端到端解决方案。通过透明地支持任务执行并允许将地面和机载资产集成到联合架构中来实现此目标。有人和无人系统协同工作,以最大程度地提高态势感知能力,提供灵活性和易用性。
依赖于光学读出场的传感和计量平台中,最小可分辨信号越来越受到标准量子极限 (SQL) 的限制,而标准量子极限由光子散粒噪声决定。因此,散粒噪声降低技术对于下一代传感器的开发至关重要,这些传感器可用于从土木工程到生物化学等各种应用,以及用于能够分辨以前被量子噪声所掩盖的材料特性的新型显微镜平台。本次演讲展示了使用双模压缩光进行亚散粒噪声限制量子生物传感方面取得的一些重大进展,并重点介绍了机器学习算法的实现,该算法用于恢复量子信息,否则这些信息将被噪声所掩盖,这些信息位于查塔努加市中心的世界上第一个软件可编程量子网络基础设施中。