基因驱动系统可以确保比正常的孟德尔分离更多地将理想性状传递给后代。成簇的规律散布回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 介导的基因驱动系统已在双翅目昆虫物种中得到证实,包括果蝇和按蚊,但尚未在其他昆虫物种中得到证实。在这里,我们开发了一种单一的 CRISPR/Cas9 介导的基因驱动构建体,用于小菜蛾,一种对十字花科作物具有高度破坏性的鳞翅目害虫。该基因驱动构建体包含一个 Cas9 基因、一个标记基因 (EGFP) 和一个靶向表型标记基因 (Pxyellow) 的 gRNA 序列,并位点特异性地插入到小菜蛾基因组中。这种基于归巢的基因驱动将包含 Cas9 基因、gRNA 和 EGFP 基因及其启动子的片段约 12 kb 复制到目标位点。总体而言,由于同源定向修复 (HDR),基因驱动效率为 6.67% – 12.59%,由于非同源末端连接 (NHEJ),抗性等位基因形成率为 80.93% – 86.77%。此外,与来自雌性亲本的转基因后代相比,来自父本的转基因后代表现出更高的基因驱动效率。这项研究证明了 CRISPR/Cas9 介导的基因驱动构建体在小菜蛾中的可行性,可将所需的性状遗传给后代。这项研究的结果为开发一种有效的 CRISPR/Cas9 介导的基因驱动系统用于害虫防治奠定了基础。
裂谷热病毒 (RVFV) 是一种新出现的虫媒病毒,可影响反刍动物和人类。裂谷热病毒在非洲和阿拉伯半岛引起严重且反复的疫情,并且很有可能在新的地区出现。尽管有多种 RVFV 兽用疫苗可用于流行地区,但目前尚无获准用于人类的疫苗;因此,需要开发和评估新疫苗。在此,我们报告了一种 RVFV 减毒活重组疫苗候选物,该疫苗基于先前描述的有条件许可的 MP12 疫苗的基因组重组。开发减毒活 RVFV 疫苗有两种通用策略,一种是连续传代野生型 RVFV 菌株以选择减毒突变体,例如 Smithburn、Clone 13 和 MP12 疫苗株。第二种策略是利用反向遗传学通过在病毒基因组中引入缺失或插入来减毒 RVFV 菌株。本报告中描述的新型候选疫苗包含一个双片段基因组,该基因组缺少病毒中片段 (M) 和两个毒力基因(非结构性小片段和非结构性中片段)。该候选疫苗名为 r2segMP12,在杂交 CD-1 小鼠中评估了其产生 RVFV 中和抗体的能力。将 r2segMP12 候选疫苗诱导的免疫反应与 rMP12 亲本株疫苗诱导的免疫反应直接进行比较。我们的研究表明,在相同疫苗接种滴度下,使用 10 5 个空斑形成单位的 r2segMP12 候选疫苗单次免疫可引发比 rMP12 疫苗更高的中和抗体反应,且无需加强。
目的:癌症代谢重编程促进对治疗的抵抗。在本研究中,我们探讨了瓦博格效应在皮肤鳞状细胞癌 (sSCC) 对光动力疗法 (PDT) 的抵抗中的作用。此外,我们评估了二甲双胍治疗作为 PDT 辅助治疗的效果,二甲双胍是一种调节代谢的抗糖尿病 II 型药物。方法:为此,我们使用了两种人类 SCC 细胞系:SCC13 和 A431,称为亲本 (P),并从这些细胞系中生成了相应的 PDT 抗性细胞 (10GT)。结果:在这里,我们表明 10GT 细胞诱导代谢重编程,增强有氧糖酵解并降低氧化磷酸化活性,这可能会影响对 PDT 的反应。这一结果也在小鼠体内形成的 P 和 10GT SCC13 肿瘤中得到证实。二甲双胍治疗导致 10GT sSCC 细胞有氧糖酵解减少,氧化磷酸化增加。最后,二甲双胍与 PDT 的结合改善了对 P 和 10GT 细胞的细胞毒性作用。联合治疗诱导原卟啉 IX 产生、活性氧生成和 AMPK 表达增加,并产生 AKT/mTOR 通路抑制。在 P 和 10GT SCC13 细胞异种移植中,体内也观察到联合治疗的更高疗效。结论:总之,我们的结果表明 PDT 耐药性至少部分意味着代谢重编程朝向有氧糖酵解,而二甲双胍治疗可以阻止这种重编程。因此,二甲双胍可能是 sSCC 中 PDT 的极佳佐剂。2022 作者。由 Elsevier GmbH 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
杂种优势描述的是杂交植株相对于其亲本的产量和稳健性增加,是现代作物育种的基石 1 。除双亲杂种优势外,在玉米、马铃薯和苜蓿中还观察到同源多倍体渐进杂种优势 (APH),当来自四个不同祖父母的基因组片段组合时,会产生额外的杂种优势效应 2 。APH 尚未在商业育种中得到充分利用,因为减数分裂会重新分配基因型,并且无法生产受益于 APH 的基因一致的种子。先前在拟南芥和水稻中建立的“有丝分裂而非减数分裂”(MiMe) 系统可产生克隆的、未减数的配子 3 – 7 ,但尚未在双子叶作物中建立或在设计多倍体基因组工程中进行测试。在这里,我们建立了番茄多倍体基因组设计,通过两个不同杂交亲本产生的克隆配子的杂交,实现了四种预定义基因组单倍型的可控组合。我们着手在番茄中建立 MiMe 系统,以可控的方式产生克隆配子。基于对番茄减数分裂突变体的基本了解(补充说明 1),我们发现可以通过 SlSPO11-1、SlREC8 和 SlTAM 的突变在自交系番茄中建立功能性 MiMe 系统(图 1a-c、扩展数据图 1 和 2、补充图 1-16 和补充表 1-4)。我们在三种杂交番茄基因型中实施了 MiMe 系统,包括 Moneyberg-TMV ⨯ Micro-Tom (MbTMV-MT) 模型杂交品种、枣番茄商业杂交品种‘Funtelle’和串番茄商业杂交品种‘Maxeza’(图 1a-c)。我们鉴定出两个独立的 MbTMV-MT、三个独立的 Funtelle 和三个独立的 Maxeza 品系,它们在 SlSPO11-1、SlREC8 和
结直肠癌(CRC)是全球与癌症相关死亡的主要原因。irinotecan被广泛用作治疗CRC的化学治疗药物。然而,在CRC中获得对伊立替康的抗性的机制仍然尚无定论。在本研究中,我们建立了一种新型的伊立替康结肠细胞系,以研究伊立替康抵抗的潜在机制,尤其是ABC转运蛋白的过表达。通过将伊立替康暴露于人类S1结肠癌细胞中,建立了耐虹膜耐药的S1-IR20细胞系。MTT细胞毒性测定法,以确定S1-IR20细胞的耐药性。与S1细胞相比,耐药细胞对伊立替康的耐药性约为47倍,对ABCG2底物的抗性。通过蛋白质印迹分析,与亲本S1细胞相比,S1-IR20细胞在蛋白质表达水平上显示出ABCG2的显着增加,而ABCB1或ABCC1在蛋白质表达水平上没有显着增加。免疫荧光测定法表明,过表达的ABCG2转运蛋白位于S1-IR20细胞的细胞膜上,这表明ABCG2转运蛋白的活性EF漏函数。通过逆转研究进一步证实了这一发现,抑制ABCG2的EF频率功能能够完全消除对伊立替康的耐药性以及S1-IR20细胞中的其他ABCG2底物。总而言之,我们的工作建立了CRC中伊立替康抗药性的体外模型,并建议ABCG2过表达是对伊立替康的耐药性的潜在机制之一。这种新型的抗性细胞系可能使未来的研究能够在体外克服耐药性并改善体内CRC治疗。
抗寄生虫药物伊维菌素在全球人类和动物健康中发挥着重要作用。然而,伊维菌素耐药性在兽医蠕虫中普遍存在,人们越来越担心人类相关蠕虫对治疗的反应不佳。尽管经过了几十年的研究,但人们对寄生蠕虫对伊维菌素耐药性的遗传机制仍知之甚少。这反映了伊维菌素在寄生蠕虫中的作用方式以及这些生物的遗传复杂性存在很大的不确定性;寄生蠕虫具有庞大且快速进化的基因组,进化历史和遗传背景的差异可能会混淆耐药性和易感种群之间的比较。我们对一种具有多重耐药性的绵羊胃肠道线虫——捻转血矛线虫(Haemonchus contortus)的敏感参考分离株进行了受控遗传杂交,并用伊维菌素选择了 F2 种群,以便与未经治疗的 F2 对照进行比较。所有种群的雌性和雄性成虫的 RNA 测序分析发现,亲本分离株之间的转录组分化程度很高,但在 F2 中这种分化显著降低,从而可以识别出与伊维菌素抗性特别相关的差异。在所有抗性种群中,单个基因 HCON_00155390:cky-1(一种假定的咽部表达的转录因子)均在 V 染色体上的一个狭窄位点上呈组成性上调,而该位点此前已被证明受到伊维菌素的选择。此外,我们检测到了抗性和易感种群之间基因表达的性别差异,包括仅在抗性雄性中 P 糖蛋白 HCON_00162780 : pgp-11 的组成性上调。在伊维菌素筛选后,我们确定了在神经元功能和氯离子稳态中发挥作用的基因的差异表达,
摘要:BRAF抑制剂(BRAFI)和MEK抑制剂(MEKI)在Braf-突变性黑色素瘤中的治疗成功受到耐药性出现的限制,并且有几种证据表明,肿瘤微环境的变化可以在获得的抗药性中起关键作用。本研究的重点是黑色素瘤细胞对Brafi vemurafenib敏感或抗药性的分泌组。蛋白质组学和细胞因子/趋化因子分泌分析,以更好地了解耐维美富尼的黑色素瘤细胞与肿瘤微环境之间的相互作用。我们发现耐维氏尼替尼的黑色素瘤细胞可以通过调节其激活和细胞因子的产生来影响树突状细胞(DC)成熟。尤其是,来自耐维氏尼替尼黑色素瘤细胞的条件培养基(CM)的人DC产生了较高水平的促炎细胞因子,这可能会促进黑色素瘤的生长,而不是从父母药物敏感细胞中衍生而来的DC。对通过质谱识别的蛋白质进行的生物信息学分析在源自vemurafenib敏感的培养基和耐维氏替尼的黑色素瘤细胞中表明蛋白酶体途径可能参与。此外,与亲本的数据相比,我们的数据证实了Brafi耐药细胞表现出更具侵略性的表型,而干扰素γ,白介素8,血管 - 内皮生长因子,CD147/BASIGIN/BASIGIN和金属蛋白酶2(金属蛋白酶2(MMMP-2)的产生显着增加)。在接受治疗和疾病进展之前,还测量了用vemurafenib或vemurafenib或vemurafenib加上cobimetinib治疗的一小组黑色素瘤患者,还测量了CD147/BASIGIN和MMP-2的血浆水平。在治疗失败时,在所有患者中都观察到CD147/BASIGIN和MMP-2的显着增量,从而增强了CD147/Basigin可能在BRAFI耐药性中发挥作用的假设。
高级别骨肉瘤是最常见的骨恶性肿瘤,其治疗主要依靠顺铂和其他 DNA 损伤药物。因此,DNA 修复机制的改变可能会显著影响对化疗的反应或耐药性。在本研究中,我们利用一组对顺铂敏感或耐药的人类骨肉瘤细胞系,评估了属于核苷酸切除修复 (NER) 或碱基切除修复 (BER) 途径的 DNA 修复相关因子以及一组 18 种激酶作为候选治疗靶点的价值,这些激酶在顺铂耐药变体中的表达高于其亲本细胞系,可能间接参与 DNA 修复。通过基因沉默方法和体外逆转 CDDP 耐药性,验证了这些因素与人类骨肉瘤细胞顺铂耐药性的因果关系。这种方法突出了一个基因亚群,蛋白质表达分析进一步证实了它们作为有希望的候选治疗靶点的价值。然后分析了 15 种抑制剂药物针对这些基因或其途径的体外活性,以确定在固有活性和克服顺铂耐药性的能力方面最活跃的药物。NSC130813(NERI02;F06)和雷公藤内酯醇均以 NER 因子为靶点,被证明是两种最活跃的药物,没有证据表明与顺铂有交叉耐药性。联合体外治疗表明,NSC130813 和雷公藤内酯醇与顺铂一起使用时,能够提高其在药物敏感和耐药骨肉瘤细胞中的疗效。这一证据可能表明,对于对顺铂反应性降低的骨肉瘤患者,未来这是一种有趣的治疗选择,即使必须仔细考虑附加附带毒性的可能影响。此外,我们的研究还表明,针对属于丝裂原活化蛋白激酶 (MAPK) 或成纤维细胞生长因子受体 (FGFR) 通路的蛋白激酶可能为骨肉瘤带来新的有希望的治疗前景,需要进一步研究。
抽象的背景尽管在管理复发或难治性多发性骨髓瘤(RRMM)患者方面靶向B细胞成熟抗原(BCMA)的嵌合抗原受体T细胞(CAR-T)的结果令人鼓舞,但Cart-T细胞的治疗副作用和功能障碍限制了这种有望的方法的效率和临床应用。在这项研究中,我们将靶向PD-1的短发夹RNA盒纳入了具有OX-40共刺激结构域的BCMA车。在暴露于单个或重复的抗原刺激下,评估了转导的PD-1 KD CAR-T细胞的表面CAR表达,T细胞增殖,细胞毒性,细胞因子产生和亚群。在RRMM患者的I期临床试验中最初观察到安全性和功效。与亲本BCMA CAR-T细胞相比,PD-1 KD BCMA CAR-T细胞疗法显示,T细胞疲劳减少,体外记忆T细胞的百分比增加。在PD-1 KD BCMA CAR-T组中,还观察到体内更好的抗肿瘤活性。在七名RRMM患者的CAR-T细胞疗法的I期临床试验中,最初在所有七名患者中观察到安全性和功效,其中包括至少1名患者(4/7,57.1%),其中1例至少有1名患者和四名患者(4/7,57.1%),具有高风险的细胞遗传学。总回应率为85.7%(6/7)。四名患者有严格的完全反应(SCR),一名患者患有CR,一名患者有部分反应,一名患者患有稳定的疾病。的安全性,其发生率是轻度至中度细胞因子释放综合征,并且没有神经毒性的发生。结论我们的研究表明了独立于抗原特异性的CAR-T细胞的设计概念,并提供了提高CAR-T细胞疗法功效的替代方法。
被称为“延伸药”,“生物可逆的衍生物”和“同源物”。5,6自1970年代初以来,这种方法已改善了癌症药物治疗。7通常由药物和一个与形成非活性底物相关的化学部分组成。用特定的生物学培养基(例如阿司匹林)或以更具针对性的方式激活后,通过进行特定的生化转化的酶,在体内释放活性药物以释放活性药物以发挥其治疗作用。碳水化合物是在体内发现的最丰富的大莫尔 - cule,并且在许多细胞相互作用(例如信号传导或细胞表面受体)中起关键作用。8由于癌细胞的快速增殖,存在高能需求。发现在癌细胞中过表达的葡萄糖转运蛋白(GLUTS),通过比正常细胞更高的葡萄糖增加葡萄糖的摄取来解决问题,这一现象称为“ warburg ectect factect”。9,这种影响受到科学界的关注,以设计和开发基于糖的靶向药物输送。10也已广泛报道说,各种糖苷酶在不同的癌症类型中过表达(见表1)。例如,在包括乳腺癌,11胃12和肝脏在内的许多癌症中,B-葡萄糖苷酶在许多癌症中被上调。13可以通过使用糖苷酶激活的前药来利用这种过表达来靶向许多不同的癌症。绝大多数基于碳水化合物的前药旨在改善药代动力学特性。,(图它们在水,低毒性和高生物相容性中表现出很高的溶解度。已经显示出几种细胞毒性剂,例如Glufosf- amide,Chlorambucil,Docetaxel,3-Paclitaxel等1)已被糖基化,发现对非癌细胞的毒性比亲本aglycons毒性小。35个肿瘤相关的碳水化合物抗原(TACA)是特定靶标,因此也被认为是癌症检测的良好生物标志物。它们对于基于碳水化的癌症疫苗至关重要,以改善免疫学