1。S. Ye和J. Lehmann。 ,2022,50,4113-4 2。 F. V.支持和K. T. Hughes,Proc。 natl。 学院。 SCI。 U.S.A.,2017,114,4745-4750。 3。 K. Mohler和M. Ibba,Nat。 微生物。 ,2017,2,17117。 4。 J. M. M. Ogle和V. Ramakrishnan,Annu。 修订版 生物化学。 ,2005,74,129-1 5。 J. W. Chinese,A。Cropp,J。C. Anderson,M。 6。 M. A. Shandell,F。Cornish的太阳,2021,60,3455-3469。 7。 P. Ghosh,H。M. Cross,K。 am。 化学。 Soc。 ,2022,144,10556-1 8。 N. Freed,M。J。J. J. opine。 生物技术。 ,2022,74,129-1 9。 N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。S. Ye和J. Lehmann。,2022,50,4113-42。F. V.支持和K. T. Hughes,Proc。natl。学院。SCI。 U.S.A.,2017,114,4745-4750。 3。 K. Mohler和M. Ibba,Nat。 微生物。 ,2017,2,17117。 4。 J. M. M. Ogle和V. Ramakrishnan,Annu。 修订版 生物化学。 ,2005,74,129-1 5。 J. W. Chinese,A。Cropp,J。C. Anderson,M。 6。 M. A. Shandell,F。Cornish的太阳,2021,60,3455-3469。 7。 P. Ghosh,H。M. Cross,K。 am。 化学。 Soc。 ,2022,144,10556-1 8。 N. Freed,M。J。J. J. opine。 生物技术。 ,2022,74,129-1 9。 N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。SCI。U.S.A.,2017,114,4745-4750。 3。 K. Mohler和M. Ibba,Nat。 微生物。 ,2017,2,17117。 4。 J. M. M. Ogle和V. Ramakrishnan,Annu。 修订版 生物化学。 ,2005,74,129-1 5。 J. W. Chinese,A。Cropp,J。C. Anderson,M。 6。 M. A. Shandell,F。Cornish的太阳,2021,60,3455-3469。 7。 P. Ghosh,H。M. Cross,K。 am。 化学。 Soc。 ,2022,144,10556-1 8。 N. Freed,M。J。J. J. opine。 生物技术。 ,2022,74,129-1 9。 N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。U.S.A.,2017,114,4745-4750。3。K. Mohler和M. Ibba,Nat。 微生物。 ,2017,2,17117。 4。 J. M. M. Ogle和V. Ramakrishnan,Annu。 修订版 生物化学。 ,2005,74,129-1 5。 J. W. Chinese,A。Cropp,J。C. Anderson,M。 6。 M. A. Shandell,F。Cornish的太阳,2021,60,3455-3469。 7。 P. Ghosh,H。M. Cross,K。 am。 化学。 Soc。 ,2022,144,10556-1 8。 N. Freed,M。J。J. J. opine。 生物技术。 ,2022,74,129-1 9。 N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。K. Mohler和M. Ibba,Nat。微生物。,2017,2,17117。4。J. M. M. Ogle和V. Ramakrishnan,Annu。修订版生物化学。,2005,74,129-15。J. W. Chinese,A。Cropp,J。C. Anderson,M。 6。 M. A. Shandell,F。Cornish的太阳,2021,60,3455-3469。 7。 P. Ghosh,H。M. Cross,K。 am。 化学。 Soc。 ,2022,144,10556-1 8。 N. Freed,M。J。J. J. opine。 生物技术。 ,2022,74,129-1 9。 N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。J. W. Chinese,A。Cropp,J。C. Anderson,M。6。M. A. Shandell,F。Cornish的太阳,2021,60,3455-3469。7。P. Ghosh,H。M. Cross,K。 am。 化学。 Soc。 ,2022,144,10556-1 8。 N. Freed,M。J。J. J. opine。 生物技术。 ,2022,74,129-1 9。 N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。P. Ghosh,H。M. Cross,K。am。化学。Soc。,2022,144,10556-18。N. Freed,M。J。J. J.opine。生物技术。,2022,74,129-19。N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。化学。,2023,15,91-110。J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。大。,2022,3,1209-111。C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。am。化学。Soc。,2018,140,6690-612。C. A. A. Jerome,St。Hoshika,K。M。Bradley,St.A。natl。学院。SCI。 美国,2022,119,226111SCI。美国,2022,119,226111
1 再生医学和血管生物学科,Monzino 心脏病学中心-IRCCS,意大利米兰 20138; erica.rurali@ccfm.it (紧急事务管理局); maria.corliano@gmail.com (MC); mariabalzo103@gmail.com (MB); michela.piccoli93@hotmail.it(MP); donato.moschetta@ccfm.it (DM); giulio.pompilio@ccfm.it (全科医生); patrizianigro@gmail.com (PN) 2 罕见疾病中心,马凡氏综合征诊所,心脏病学科,ASST FBF-Sacco,20157 米兰,意大利; alessandro.pini@asst-fbf-sacco.it 3 血管心脏遗传学中心,IRCCS Policlinico San Donato,San Donato Milanese,20097 意大利米兰 4 国家研究委员会(CNR),生物医学研究与创新研究所(IRIB),90146 巴勒莫,意大利; raffi aella.gaetano@ibim.cnr.it 5 生物医学和临床科学系“L. Sacco”,米兰大学,20157,意大利; carlo.antona@unimi.it 6 巴塞罗那大学生物医学系和奥古斯特·皮伊·苏尼尔调查研究所(IDIBAPS),08036 巴塞罗那,西班牙; gegea@ub.edu 7 马克斯普朗克生物物理化学研究所,37077 哥廷根,德国; gunter.fischer@mpibpc.mpg.de 8 德国马丁路德大学哈勒维滕贝格分校生物化学与生物技术研究所酶学系,06120 哈勒,德国; miroslav.malesevic@biochemtech.uni-halle.de 9 心脏外科部,Monzino 心脏病学中心 IRCCS,20138 米兰,意大利; francesco.alamanni@unimi.it 10 米兰大学临床和社区科学系,20122 米兰,意大利 11 特雷维索组织库基金会,31100 特雷维索,意大利; ecogliati@fbtv-treviso.org (欧盟); adolfo.paolin54@gmail.com (AP) 12 心血管外科部,Monzino 心脏病学中心 IRCCS,20138 米兰,意大利 * 通讯地址:gianluca.perrucci@ccfm.it;电话:+39-02-5800-2754;传真:+ 39-02-5800-2342 † 与上一位作者贡献相同。
结果:我们表明,我们的Enzbert Transformer模型通过蛋白质语言模型的专业化而受过训练,可预测酶佣金(EC)数量,仅基于序列而优于单功能酶类预测的最先进的工具。在EC40基准上的第二级预测EC数量的预测中,精度从84%提高到95%。为了评估第四级的预测质量,这是最详细的EC数字,我们构建了两个新的基于时间的基准测试,以与最先进的方法ECPRED和DEEPEC进行比较:Macro-F1分别从41%提高到54%,从20%提高到20%。最后,我们还表明,使用一个简单的注意力图与EC预测任务上的其他经典性方法相当,或者比其他经典性方法更好。更具体地,注意图鉴定出的重要残基倾向于对应于已知的催化位点。量化,我们报告的最高F-GEAIN评分为96.05%,而经典的可解释性方法最多达到91.44%。
引言和目标:有一些HBA1C估计方法取决于糖化血红蛋白的不同物理,化学,免疫学特征。已经开发了许多分析技术,用于评估糖尿病(DM)中的HBA1C,包括免疫尿路二仪,硼酸盐亲和力色谱,酶试验和高性能液相色谱(HPLC)免疫测定。值得注意的是,不同的估计方法可能会产生不同的结果。本研究旨在进行和比较两种分析技术(特别是酶法方法和HPLC方法),以观察和分析同一样品中结果的任何变化。材料和方法:这是一项涉及100个EDTA样品的观察横截面研究。这项研究重点是使用两种不同的方法进行HBA1C分析:Atellica CH 930酶促血红蛋白A1C(HBA1C_E)来自西门子卫生仪和来自Bio-Rad Laboratories的阳离子交换HPLC HPLC。结果:两种方法之间观察到了强大的鲁棒相关性,这是Pearson系数为0.983的。平淡的Altman图显示了两种技术之间的高度一致性,其中95%的值落在±SD(标准偏差)之内,表明一致性很强。结论:这项研究确定,Atellica CH 930酶促血红蛋白A1C(HBA1C_E)和阳离子交换HPLC均为HBA1C产生了可比的结果。因此,两种分析技术均被认为适用于有效治疗糖尿病。关键词:糖尿病,糖化血红蛋白,高性能液相色谱,血红蛋白A1c通过酶法方法。印度医学生物化学杂志(2023):10.5005/jp-journals-10054-0223
促纤维增生性小圆细胞瘤 (DSRCT) 是一种高度侵袭性的儿童癌症,由 11 号和 22 号染色体之间的相互易位引起,从而导致 EWSR1::WT1 癌蛋白的形成。DSRCT 最常见于腹部和盆腔腹膜,对目前的治疗方案(包括化疗、放疗和手术)具有耐药性。作为一种罕见癌症,样本和模型的可用性一直是 DSRCT 研究的限制因素。然而,罕见肿瘤库和新型细胞系的建立最近推动了对 DSRCT 生物学的理解和潜在有前景的靶向治疗方法的识别方面取得了关键进展。在这里,我们回顾了模型和数据集的可用性、对 EWSR1::WT1 致癌机制的当前理解以及有前景的临床前治疗方法,其中一些现在正在进入临床试验阶段。我们讨论了抑制关键依赖性(包括 NTRK3、EGFR 和 CDK4/6)的努力,以及针对 DSRCT 中高表达的表面标志物(如 B7-H3 或源自或由融合癌蛋白驱动的新肽)的新型免疫治疗策略。最后,我们讨论了联合疗法的前景和优先考虑临床转化的策略。
霜霉病抗性 6 (DMR6) 蛋白是一种 2-氧戊二酸 (2OG) 和 Fe(II) 依赖性加氧酶,参与水杨酸 (SA) 代谢。SA 被认为是一种非生物胁迫耐受性增强剂,在番茄中发现 DMR6 的失活会增加其水平并诱导对多种病原体的抗病性。通过应用 CRISPR/Cas9 技术,我们生成了 Sldmr6-1 番茄突变体并测试了它们对干旱和晚疫病的耐受性。野生型番茄品种‘San Marzano’及其 Sldmr6-1 突变体被剥夺了 7 天的水。WT植物表现出严重的枯萎,而T 2 Sldmr6-1突变体叶片肿胀,并保持较高的土壤相对含水量。生态生理测量表明,Sldmr6-1突变体采取了节水行为,通过降低气孔导度来降低蒸腾速率。在干旱胁迫下,同化率也降低,导致气孔下腔中的CO 2浓度没有改变,并提高了水分利用效率。此外,在Sldmr6-1突变体中,干旱胁迫诱导抗氧化相关基因SlAPX和SlGST的上调以及参与ABA分解代谢的SlCYP707A2基因的下调。最后,我们首次在番茄中强调,Sldmr6-1 突变体对晚疫病的病原菌致病菌的敏感性降低。
ITaP 实用策略 – 学习谈话(第 2 阶段)荒岛阅读:Knight,R.(2020 年)“课堂谈话。面向探究型教师的循证教学”,Critical Publishing。圣奥尔本斯。4 个目标,以实现高效
含摘要黄素单加氧酶(FMO)是一种保守的异种生物酶家族,包括多种寿命干预措施,包括线虫和小鼠模型。以前的工作支持秀丽隐杆线虫FMO-2通过重新布线内源代谢来促进寿命,抗压力和健康状态。但是,有五个秀丽隐杆线虫FMO和五个哺乳动物FMO,尚不清楚促进长寿和健康益处是否是该基因家族的保守作用。在这里,我们报告说,秀丽隐杆线虫FMO-4的表达促进了饮食限制和MTOR抑制下游的寿命延伸和偏花应力抗性。我们发现,仅皮下注射中FMO-4的过表达就足以容纳这些好处,并且该表达显着修饰了转录组。通过分析基因表达的变化,我们发现与钙信号相关的基因被显着改变了FMO-4的下游。强调了钙稳态在该途径中的重要性,FMO-4过表达的动物对Thapsigargin敏感,Thapsigargin是一种ER胁迫,可抑制从细胞质到ER腔的钙通量。这种钙/ FMO-4的相互作用通过数据巩固,表明用小分子或遗传学调节细胞内钙可以改变FMO-4的表达和/或与FMO-4相互作用,以影响寿命和抗压力。进一步的分析支持一条途径,其中FMO-4调节激活转录因子-6(ATF-6)下游的钙稳态(ATF-6),其敲低引起并需要FMO-4表达。一起,我们的数据将FMO-4识别为延长的基因,其作用与已知的寿命途径和钙稳态相互作用。
动态电刺激促进了HIPSC-CM分化和功能抽象的人类诱导的多能干细胞分化的心肌细胞(HIPSC-CMS)具有很大的潜力,可以解决心血管疾病,但由于其功能不成熟而受阻。在心脏病发生过程中测得的复杂电势表明,外源性电刺激在改善心脏分化和功能方面的潜力。在此,我们创建,验证和实施低成本的电刺激装置,以刺激心脏分化期间的hipsc。值得注意的是,我们的开源设备可以生成复杂的电刺激状态,这些刺激状态可能会随着时间的流逝而变化和脉冲持续时间。我们的结果表明,分化过程中的动态刺激提高了心脏分化效率,钙处理和流速性,并促进了与静态刺激或没有刺激控制的显着转录组途径富集。动态刺激可以通过肌节发育增强电化学耦合并促进心源途径的表达。我们预计可以生成更复杂的动态电刺激方案,以进一步优化HIPSC-CM功能和成熟度。简介
shank3相关的蛋白网络在磷酸化和去磷酸化的蛋白中显着富集。shank3基因在染色体22q13.3上的单倍不足通常会导致Phelan-McDermid综合征(PMS),这是一种遗传定义的自闭症形式,在运动行为,感觉处理,语言,语言和认知功能中存在严重缺陷。我们在shank3杂合小鼠中确定了多种疾病的表型,并表明JB2挽救了突触功能和可塑性,学习和记忆,超声声音和运动功能的缺陷;它还标准化了神经元兴奋性和癫痫敏感性。值得注意的是,JB2挽救了听觉诱发的响应潜伏期,α峰值频率和稳态脑电图响应的缺陷,该响应的测量值直接转化为人类受试者。这些数据表明JB2是神经可塑性的有效调节剂,具有治疗PMS和ASD的治疗潜力。