摘要。如今,基于计算机技术的进步,研究旨在开发新的数据处理方法。一些研究侧重于创造模仿人类生物数据处理机制的新工具。这些研究为人工神经网络的发展铺平了道路,与传统的、更常用的预测分析工具相比,人工神经网络可以被视为一种更优越的预测分析工具。如今,人工神经网络已在生态学、工程学和健康等学科中得到广泛应用。然而,可以说,尽管它们比其他预测分析更具功能性和有效性,但它们在教育研究中的应用却十分有限。本研究旨在通过参考通过人工神经网络分析进行的研究,阐明人工神经网络在教育研究中的功能和作用。关键词:人工神经网络、多层感知器、单层感知器、输入层、隐藏层简介人工神经网络是模拟人类数据处理系统的数据处理系统(Elmas,2003 年,第 22 页)。人工神经网络的概念源于在计算机系统上模仿人脑的运作原理,用定量数据进行计算,并创建生物神经元的数学模型(Efe & Kaynak,2000,第 1 页)。第一个人工神经网络是由神经生理学家 Warren McCulloch 和数学家 Walter Pitts 基于人脑的计算能力创建的(Bishop,2014,第 9 页)。 1958 年 Frank Rosenblatt 开发出感知器这种人工神经网络系统后,人工神经网络的研究开始加速,随后出现了自适应线性元件(自适应线性元件 (Widrow & Hoff, 1960)、Hopfield 网络 (Hopfield, 1982)、Kohonen 网络 (Kohonen, 1982, 1984)、玻尔兹曼机 (Ackley et al., 1985) 和通过反向传播算法学习的多层前馈神经网络 (Rumelhart et al., 1986;引自 Lek & Guegan, 1999, p. 67)。现代人工神经网络研究的重点是开发新的、更有效的学习算法,并创建能够响应随时间变化的模型的网络 (Kriesel, 2007, pp. 21-22)。如前所述,人工神经网络模拟人类大脑中的生物神经元和创建人工神经元的数学模型基于生物模型(Kohli et al.,, 2014, p. 745)。Hanrahan(2011, p. 5)描绘了生物模型的结构,如图1所示;
人工智能及其在牙科中的现代应用 Akansha Vilas Bansod 博士、Sweta Kale Pisulkar SPDC 博士、Wardha 摘要:人工智能 (AI) 已以多种方式应用于医疗保健领域。它是一门工程和科学领域,与感知智能行为以及创建复制此类行为的人工制品有关。技术一直是每个行业最大的创新,牙科护理也不例外。人工智能可以作为口腔病变诊断和治疗的有用方式,并且可用于筛查和分类正在发生癌前和恶性变化的可疑口腔粘膜。可以极大地探索这一领域,以便于诊断、正确治疗和获得令人满意的结果。 关键词:人工智能、人工神经网络、深度学习、机器学习。1. 简介
摘要 — 本文研究了人工神经网络 (ANN) 作为基于机器学习算法的替代建模方法在模拟高 Q 压电谐振器和滤波器的电声波行为方面的有效性。本文还讨论了结合 ANN 模型的域分解方法,用于同时分析多域射频 (RF) 模块。本文开发了不同的多层感知器 (MLP) ANN 模型,并根据其模型精度和模型效率进行了基准测试。然后利用开发的模型构建梯形 Band 7 和 Band 41 带通发射滤波器作为示例,以突出建模方法的质量。本文简要讨论了与机器学习算法能力相关的其他可能应用。
摘要 — 脉冲神经网络 (SNN) 通过离散二进制事件计算和传递信息。在新兴的神经形态硬件中,它被认为比人工神经网络 (ANN) 更具生物学合理性且更节能。然而,由于不连续和不可微分的特性,训练 SNN 是一项相对具有挑战性的任务。最近的工作通过将 ANN 转换为 SNN 在出色性能上取得了实质性进展。由于信息处理方面的差异,转换后的深度 SNN 通常遭受严重的性能损失和较大的时间延迟。在本文中,我们分析了性能损失的原因,并提出了一种新型双稳态脉冲神经网络 (BSNN),解决了由相位超前和相位滞后引起的失活神经元 (SIN) 脉冲问题。此外,当基于 ResNet 结构的 ANN 转换时,由于快捷路径的快速传输,输出神经元的信息不完整。我们设计了同步神经元 (SN) 来帮助有效提高性能。实验结果表明,与以前的工作相比,所提出的方法仅需要 1/4-1/10 的时间步骤即可实现几乎无损的转换。我们在包括 CIFAR-10(95.16% top-1)、CIFAR-100(78.12% top-1)和 ImageNet(72.64% top-1)在内的具有挑战性的数据集上展示了 VGG16、ResNet20 和 ResNet34 的最先进的 ANN-SNN 转换。
选择定价已成为金融市场中非常重要的部分之一。由于市场总是动态的,因此很难准确预测期权价格。因此,已经设计和开发了各种机器学习技术,以解决预测期权价格未来趋势的问题。在本文中,我们比较了支持向量机(SVM)和人工神经网络(ANN)模型的有效性,以预测期权价格。两种模型均使用公共可用数据集的基准测试,即在测试和培训阶段间谍期权价格2015。在两种模型中都使用了通过主成分肛门(PCA)转换的数据,以实现更好的预测准确性。另一方面,整个数据集分为两组培训(70%)和测试集(30%),以避免过度拟合问题。将SVM模型的结果与基于均方根误差(RMSE)的ANN模型的结果进行了比较。实验结果证明了ANN模型的性能优于SVM模型,并且预测的期权价格与相应的实际期权价格非常吻合。
许多公司提供 AI 驱动的软件平台,用于对临床测序数据(例如 NGS、WES、WGS)进行基因组分析和解释,例如使用 VCF 文件作为输入(表 1)。分析任务包括比对、变异解释、变异调用、注释和分析以及文献整理。AI 驱动方法的优势包括大大缩短周转时间并提高诊断产量。还有基于监督学习(例如 ISOWN)、机器学习(例如 BAYSIC、MutationSeq、SNooPer、SomaticSeq)、卷积神经网络(例如 Clairvoyante)、深度卷积神经网络(例如 DeepSea)、深度循环神经网络(例如 Deep Nano)、深度神经网络(例如 DANN)和人工神经网络(例如 Skyhawk)的基于 AI 的变异调用算法(一些可免费获得),这些算法最近都得到了调查和评论(Bohannan and Mitrofanova 2019;Karimnezhad et al 2020;Koboldt 2020;Liu et al 2019;Xu 2018)。
摘要 对医疗保健提供者来说,获得患者疼痛程度的客观测量一直是一个挑战。医院环境中最常见的疼痛评估方法是询问患者的口头评分,这被认为是一种主观方法。为了获得患者的客观疼痛程度,我们建议使用瞳孔反应和机器学习算法来客观地测量疼痛程度。东北大学招募了 32 名健康受试者参与了这项研究。通过要求健康受试者将手放在装满冰水的桶中,对他们施加疼痛刺激。我们从瞳孔直径数据中提取了 11 个特征。为了获得最佳特征子集,使用遗传算法 (GA) 为人工神经网络 (ANN) 分类器选择特征。在特征选择之前,ANN 的 f1 分数为 54.0 ± 0.25%,包含所有 11 个特征。经过特征选择后,ANN 使用所选特征子集(即平均值、均方根 (RMS) 和瞳孔曲线下面积 (PAUC))表现出最佳性能,准确率为 81.0%。实验结果表明,瞳孔反应与机器学习算法相结合可能是一种有前途的客观疼痛水平评估方法。这项研究的结果可以改善患者在远程医疗中测量疼痛的体验,尤其是在大多数人不得不待在家里的疫情期间。
人类和现在的计算机可以从感官事件中得出主观评价,尽管这种转化过程本质上是未知的。在这项研究中,我们通过将卷积神经网络 (CNN) 与人类的相应表征进行比较,阐明了未知的神经机制。具体而言,我们优化了 CNN 以预测绘画的审美评价,并通过多体素模式分析研究了 CNN 表征与大脑活动之间的关系。初级视觉皮层和高级关联皮层活动分别类似于浅层 CNN 和深层 CNN 中的计算。因此,视觉到价值的转换被证明是一个分层过程,与连接单模态到跨模态大脑区域(即默认模式网络)的主要梯度一致。额叶和顶叶皮层的活动由目标驱动的 CNN 近似。因此,可以通过与大脑活动的对应关系来理解和可视化 CNN 隐藏层的表征——促进人工智能与神经科学之间的相似性。
• 发表日期 / 收到日期:2020 年 11 月 17 日 • 修改发表日期 / 收到修订版:2021 年 2 月 9 日 • 喀布尔日期 / 接受日期:2021 年 3 月 15 日 摘要 如今,建立具有可靠精度的质量控制系统对于生产零缺陷的工业产品非常重要。在这方面,相机控制系统采用可靠的控制算法是一个至关重要的问题。在本研究中,开发了一种使用模式匹配算法的实时控制算法,以使用人工神经网络 (ANN) 优化最小对比度参数。在本研究中,使用 LabVIEW 图像控制工具对模式匹配中包含的三种算法在时间方面的比较进行了比较。此外,还讨论了低差异采样算法中最关键的参数之一,它能及时给出良好的结果,即最小对比度参数。该参数的优化是通过使用ANN中的Levenberg-Marquardt训练算法来完成的。获得的结果表明,所提出的使用 ANN 优化最小对比度参数的模式匹配算法对于质量控制应用来说是快速且有效的。关键词:人工神经网络、模式匹配、金字塔匹配然后,控制系统中的控制算法即可完成。但是,该算法是控制算法的最佳选择,可以通过最小对比度参数 (YSA) 来优化该算法。使用 LabVIEW 的算法来控制 LabVIEW 的控制。Ayrıca, zaman açısından iyi sonuçlar veren düşük-tutarsızlık örnekleme algoritmasında enönemli parametrelerden biri olan minicontrast parametresi tarışılmıştır.参数优化 YSA'da Levenberg-Marquardt eğitim algoritması kullanılarak yapılmıştır。Kullanılan yöntem sayesinde, desen eşleştirmesinin hızlı ve etkili olduğu görülmüştür。Anahtar kelimeler : Yapay sinir ağı, Desen eşleştirme, Piramit eşleştirme