使用基因和基因组的基因本体论,京都百科全书以及从Uniprot储存库中检索到的反应术语的注释。ZC值是以SD单位表示的类别的log 2比率。补充表4显示了功能类别的蛋白质成分的ZQ值
本预印本的版权所有者(此版本于 2022 年 5 月 10 日发布。;https://doi.org/10.1101/2022.05.10.491367 doi:bioRxiv preprint
具有交错结构(例如蚀刻停止 (ES) 和背沟道蚀刻 (BCE) 结构)的铟镓锌氧化物 (IGZO) 薄膜晶体管 (TFT) 已被证明可用作平板显示器中的电路器件 [1,2]。然而,由于栅极和源/漏极 (S/D) 电极之间的重叠,这些交错结构器件不可避免地具有较大的寄生电容,从而导致 TFT 器件的工作速度较低。自对准 (SA) 共面结构是克服该寄生电容问题的一种有前途的解决方案 [3]。形成导电的 n + -IGZO 以获得有源 S/D 区和 S/D 电极之间的欧姆接触是 SA 共面器件的重要工艺。已经提出了许多用于该工艺的方法,并且制备的 IGZO 器件具有良好的性能。通常使用等离子体处理(Ar、H2 等)[4,5] 和深紫外(DUV)照射 [6] 。然而,这些解决方案需要一个额外的步骤,如图 1a 所示,这会导致额外的工艺成本。在 SiO2 栅极绝缘体(GI)过蚀刻期间形成 n + -IGZO 是一种简单的方法 [7,8]。然而,当 GI 蚀刻等离子体可以蚀刻 IGZO 薄膜时,这种方法并不适用。最近,已经证明通过简单地涂覆有机层间电介质(ILD)可以形成 n + -IGZO 区域,并且获得了 24 Ω·cm 的沟道宽度归一化 S/D 串联电阻(R SD W)[9]。本报告展示了在 ILD 沉积过程中形成 n + -IGZO 区域的可能性。基于这个想法,其他制造低 R SD W SA 共面 IGZO TFT 的新方法值得研究。在这项工作中,我们使用磁控溅射工艺沉积 SiO x ILD 并同时为 SA 共面 IGZO TFT 形成 n + -IGZO 区域。这样,ILD 沉积和 n + 形成可以合并为一个步骤,如图 1b 所示。制造的器件具有相当低的 R SD W 。降低 IGZO 薄膜的机制
摘要:栅极绝缘体是决定石墨烯场效应晶体管 (GFET) 性能的最重要因素之一。栅极电压对导电通道的良好静电控制需要较薄的栅极氧化物。由于缺乏悬挂键,通过原子层沉积 (ALD) 工艺生长的栅极介电膜通常需要种子层。种子层可实现介电膜的高质量沉积,但可能导致最终介电膜厚度大幅增加。针对该问题,本文提出了一种改进工艺,在原子层沉积之前使用蚀刻溶液去除自氧化的 Al 2 O 3 种子层,Al 2 O 3 残留物将提供石墨烯表面的成核位点。受益于电介质膜厚度的减小,与使用标准 Al 蒸发种子层方法的 GFET 相比,使用此方法作为顶栅电介质膜沉积工艺的 GFET 的跨导平均增加了 44.7%。
纳米抗体是从骆驼科动物中分离出来的单可变域抗体,由于其相对稳定性、易于生产和分离以及高结合亲和力,正迅速成为生物传感器中理想的识别元件。然而,实时传导纳米抗体与分析物的结合具有挑战性,因为大多数纳米抗体在识别目标时不会直接产生光或电信号。在这里,我们报告了一种制造灵敏且选择性的电化学传感器的通用策略,该传感器结合了纳米抗体,用于检测异质介质(例如细胞裂解物)中的目标分析物。石墨毡可以用重组 HaloTag 修饰的纳米抗体进行共价功能化。随后使用气相沉积工艺用一层薄薄的水凝胶进行封装,可获得封装电极,该电极在抗原结合时直接显示电流减少,而无需添加氧化还原介质。差分脉冲伏安法可在特定抗原浓度的多个电极样品中提供清晰且一致的电极电流减少。正如预期的那样,观察到的电流随抗原浓度增加而变化的情况遵循 Langmuir 结合特性。重要的是,未纯化的细胞裂解物中的选择性和可重复性靶标结合仅由封装电极证明,抗原检测限约为 30 pmol,而缺乏封装的裸电极在对照实验中会产生大量假阳性信号。© 2022 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒介中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2754-2726/ac5b2e]
摘要:开发了一种计算上可承受的方法来预测空间中大分子(如多环芳烃)碰撞猝灭和激发的截面和速率系数。应用了混合量子/经典非弹性散射理论 (MQCT),其中分子内部状态之间的量子态到态跃迁使用时间相关薛定谔方程来描述,而碰撞伙伴的散射则使用经典的平均场轨迹来描述。为了进一步提高数值性能,实施了运动方程的解耦方案和初始条件的蒙特卡罗采样。该方法用于计算苯分子 (C 6 H 6 ) 与广泛能量范围内的 He 原子碰撞时旋转激发和猝灭的截面,使用高达 j = 60 的非常大的旋转本征态基组,以及接近一百万个非零矩阵元素进行态到态跃迁。报告并讨论了 C 6 H 6 + He 碰撞截面的性质。近似的精度经过严格测试,发现适用于天体物理/天体化学模拟。此处开发的方法和代码可用于生成 PAH 和其他大分子(如 iCOM)或彗星彗发中分子 - 分子碰撞的碰撞猝灭速率系数数据库。关键词:非弹性散射、旋转激发、态间跃迁、旋转状态、非弹性截面、MQCT、苯、C 6 H 6 ■ 引言
质量保证证实该产品已根据正确的程序制造和测试。国家监管局授予最终授权发布产品
对于高相干性固态量子计算平台来说,微波频率下低损耗的电介质是必不可少的。在这里,我们通过测量集成到超导电路中的由 NbSe 2 –hBN–NbSe 2 异质结构制成的平行板电容器 (PPC) 的品质因数,研究了六方氮化硼 (hBN) 薄膜在微波范围内的介电损耗。在低温单光子范围内,提取的 hBN 微波损耗角正切最多在 10 −6 中间范围内。我们将 hBN PPC 与铝约瑟夫森结集成,以实现相干时间达到 25 μs 的传输量子比特,这与从谐振器测量推断出的 hBN 损耗角正切一致。与传统的全铝共面传输相比,hBN PPC 将量子比特特征尺寸缩小了约两个数量级。我们的研究结果表明,hBN 是一种很有前途的电介质,可用于构建高相干量子电路,它占用空间大大减少,能量参与度高,有助于减少不必要的量子比特串扰。广义的超导量子比特包括由电感和电容元件分流的约瑟夫森结,它们共同决定了它的能谱 1 。虽然理想情况下,组成超导量子比特的材料应该是无耗散的,但量子比特退相干的主要因素是量子比特的电磁场与有损体积和界面电介质的相互作用 2 。在典型的超导电路中,介电损耗可能发生在约瑟夫森结的隧穿势垒中,以及覆盖设备的许多金属和基底界面的原生氧化层中 3、4 。这些电介质通常是具有结构缺陷的非晶态氧化物,可以建模为杂散两能级系统 (TLS)。虽然这些 TLS 的微观性质仍有待完全了解,但已确定 TLS 集合与超导量子电路中的电磁场之间的相互作用限制了量子比特的相干性和超导谐振器的品质因数。人们还怀疑 TLS 可能存在于设备制造过程中留下的化学残留物的界面处 4、5。
时空扭曲是由于重力造成的。根据牛顿引力公式,如果任何物体的质量为零,那么引力就会为零。假设太阳和地球之间的情况,大约需要 8 分 20 秒,但如果太阳以某种方式消失,引力就会为零。我们都知道光比引力移动得快得多,因为引力是所有力中最弱的。那么引力怎么会比光快呢?花了 200 年才解决这个奇怪的情况。爱因斯坦的理论认为空间因行星的引力而弯曲。可以假设空间就像一张网,上面放着一些重物。这被称为时空扭曲。爱因斯坦从运动学(运动物体的研究)的角度提出了他的理论。他的理论是对洛伦兹 1904 年的电磁现象理论和庞加莱的电动力学理论的进步。虽然这些理论包括与爱因斯坦引入的方程(即洛伦兹变换)相同的方程,但它们本质上是为了解释各种实验(包括著名的迈克尔逊-莫雷干涉仪实验)的结果而提出的临时模型,这些实验极难融入现有范式。
最近开发了将薄膜材料的二维(2D)模式转换为3D介质结构的方法,在微系统设计中创造了许多有趣的机会。增长的感兴趣领域是多功能的热,电气,化学和光学接口到生物组织,尤其是3D多细胞,毫米尺度的构建体,例如球体,组装和类动物。本文提供了3D机械界面的示例,其中parylene-c的细丝带构成了透明,高度合规的框架的基础,这些框架可以可逆地打开和封闭,以捕获,包裹和机械限制脆弱的3D组织,以柔和的,非毁灭性的方式,以确切的粘膜属性测量,用于使用粘ellasticalsiques in nanoindent in nanoindentiques in nanoindentiques in nanoindentiques。有限元分析是一种设计工具,可用于指导对形状匹配的3D体系结构的几何和材料参数的选择。这些计算方法还量化了在打开和关闭其赋予的结构和力的过程中变形的各个方面,它们赋予了它们的结构和力。纳米识别的研究表明,根据器官的年龄,有效的Young的模量在1.5至2.5 kPa范围内。这一结果收集表明,在毫米级,软生物组织的非侵入性机械测量中广泛的效用。