• AHAD - 航空航天和高性能合金数据库 此数据库是 ASMD 的升级和扩展版本 - 它包括 ASMD 中的所有数据以及新高性能合金数据库 (HPAD) 中的所有数据。 • ASMD - 航空航天结构金属数据库 金属合金数据库包含 230 多种轻质高强度合金及其相关特性。 • CLTD - 低温数据库 包含 0 K 至 273 K 温度范围内 2,000 多种材料的热物理、机械、电气和其他特性。 • DTDH - 损伤容限设计手册 (PDF) 高强度合金断裂和裂纹扩展数据的综合汇编。 • HPAD - 高性能合金数据库 材料特性数据重点关注石油/天然气、化学加工、发电、运输行业和高性能合金制造商的需求;涵盖 170 多种合金。 • MCMD - 微电子和复合材料数据库 该数据库是 MPMD 的升级和扩展版本(MPMD 是一个微电子封装材料数据库,包括 1,100 种材料和超过 25,000 条电气、机械、热和其他特性的数据曲线)。它包含 MPMD 中的所有内容以及有关 200 多种复合材料的大量新数据,包括陶瓷基复合材料(颗粒和晶须增强)以及 GLARE 材料(玻璃层压铝增强环氧树脂,也称为 GLAss REinforced 层压板)。MCMD 包括 1,550 个新数据集,以及 4,629 条附加曲线。 • SAH - 结构合金手册 (PDF) 手册信息可帮助选择用于建筑、重型设备、汽车和其他应用的合金。 • TPMD - 物质的热物理性质数据库 90 多个一般材料组中 5,200 多种材料的热物理和热辐射特性。
H. 使用任何捆扎带时,必须进行 [ARE] 操作以确保捆扎带接头下侧的末端至少超出密封件 6 英寸,捆扎带需要额外的最小长度,以便随后收紧松动的捆扎带。通过使用送料轮张紧工具(手动或气动)并应用一个额外的密封件,无需更换捆扎带或拼接捆扎带即可完成重新张紧。
所述资源可供专业开发人员应用 TI 产品进行设计使用。您将对以下行为独自承担全部责任: (1) 针对您的应用选择合适的 TI 产品; (2) 设计、 验证并测试您的应用; (3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。 TI 对您使用 所述资源的授权仅限于开发资源所涉及 TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它 TI 或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等, TI 对此概不负责,并且您须赔偿由此对 TI 及其代表造成的损害。
摘要:核心部件全场位移感知与数字孪生在航空制造等精密制造行业中发挥着至关重要的作用。本文提出一种在线多点位移监测与矩阵补全理论相结合的实时全场位移感知方法。首先,建立基于多点观测信息的全场位移感知概念模型。为获得核心部件的全场位移,将部件划分为丰富的离散点,包括观测点与未观测点,并在此基础上建立观测点与全场位移之间的对应关系。然后,提出全场位移感知模型的求解方法。基于矩阵补全原理和仿真大数据,采用最优化问题建立模型,并给出伪代码。最后,进行全场位移感知实验。重复实验表明,采用该方法计算的位移最大误差小于0.094 mm,中值误差小于0.054 mm,平均时间小于0.48 s,有利于满足大型飞机装配对精度和效率的高精度要求。
摘要 - 生成人工智能(Genai)的演变构成了在不同方面重塑技术未来的转折点。无线网络特别是随着自我发展网络的开花,代表了一个丰富的领域,用于利用Genai并获得几种好处,这些收益从根本上可以改变当今无线网络的设计和操作方式。是特定的,大型的Genai模型被设想开放一个自主无线网络的新时代,在该时代中,可以微调进行多种电信数据训练的多模式Genai模型,以执行几个下游任务,消除了为每个特定任务的构建和培训型号的构建和培训的培训的需求,并为每个人提供了人工通用的通用型号(启用人工通用的工程)(启用人工通用的工程)(启用人工通用的工程)(启用人工通用)(agi og ogig of Miatsem Inter-egi)。在本文中,我们旨在展现可以从将大型Genai模型集成到电信域中获得的机会。尤其是我们首先强调了大型Genai模型在未来的无线网络中的应用,从而定义了潜在用例并揭示了对相关的理论和实际挑战的见解。此外,我们推出了6G如何通过连接多个设备大型Genai模型来打开新的机会,因此,为集体智能范式铺平了道路。最后,我们对Genai模型将成为实现自我发展网络的关键提出了前瞻性的愿景。
联合国大会(2015 年)制定了一项议程,其中包含 17 个目标,需要在全球范围内到 2030 年实现,以促进可持续的未来。实现这些目标需要设计和实施更有效的战略来管理复杂系统,包括人类及其社会、世界经济、城市地区、自然生态系统和气候(Gentili,2021a)。一项有前途的战略,即正在蓬勃发展的战略,依赖于人工智能 (AI) 和机器人技术的发展。人工智能帮助人类收集、存储和处理监测复杂系统不断演变所需的大数据(Corea,2019 年)。人工智能还帮助我们下定决心控制复杂系统的行为。硬机器人和软机器人让人类能够进入原本无法进入的环境。例如,它们帮助我们(1)研究其他行星的地球化学特征、考察海洋深渊以发现新的贵重材料和能源矿藏;(2)进入人体内部器官进行侵入性较小的手术;(3)在肮脏或危险的地方工作。开发人工智能的主要传统方法有两种(Lehman 等人,2014 年;Mitchell,2019 年)。第一种方法是编写在基于冯·诺依曼架构的电子计算机上运行的“智能”软件,该架构的主要缺点是处理单元和存储单元在物理上是分开的。一些软件模仿严谨的逻辑思维,而另一些软件模仿神经网络的结构和功能特征来学习如何从数据中执行任务。开发人工智能的第二种方法是在神经假体的硬件中实现人工神经网络,或设计类似大脑的计算机,将处理器和内存限制在同一空间中(所谓的内存计算;Sebastian 等人,2020 年)。如果人工神经网络由硅基电路或无机忆阻器制成,则它们是刚性的;如果基于有机半导体薄膜,则它们是柔性的(Christensen 等人,2022 年;Lee and Lee,2019 年;Wang 等人,2020 年;Zhu 等人,2020 年)。它们可以采用三种不同的架构进行设计:(A1)前馈(具有可训练的单向连接)、(A2)循环(具有可训练的反馈动作)或(A3)储层(由未训练的非线性动态系统与可训练的输入和输出层耦合而成)网络(Nakajima,2020 年;Tanaka 等人,2019 年;Cucchi 等人,2022 年;见图 1A)。在过去十年左右的时间里,一种开发人工智能的新颖而有前途的策略被提出:它包括通过湿件(即液体)中的分子、超分子和系统化学来模仿人类智能和所有其他生物所表现出的智能形式
防卫省情报本部网站(https://www.mod.go.jp/dih/service.html)〒162-8806 东京都新宿区市谷本村町5-1 防卫省情报本部总务部会计课(联系人:高田)电话:03-3268-3111(内线31752)直拨传真:03-5225-9641
2022 年 6 月 21 日 — 国防部竞赛。资格。货物销售。D 或以上。详细分类。规格等。...零件编号或规格。所用设备的名称。21TB1AN0206。0001。GE021269390。