摘要背景:拓扑异构酶 I 是一种酶,它通过松弛超螺旋双链 DNA 在 DNA 复制和转录中起着至关重要的作用。拓扑异构酶 I 抑制剂与拓扑异构酶 I 裂解复合物结合,从而稳定它并防止 DNA 链重新连接,导致 DNA 损伤、细胞周期停滞和细胞凋亡。各种拓扑异构酶 I 抑制剂已在实体瘤中得到评估,伊立替康和拓扑替康已被批准用于治疗上皮恶性肿瘤。这些药物均未获准用于治疗肉瘤,肉瘤是一类多样化的罕见实体瘤,对有效治疗的需求尚未得到满足。摘要:拓扑异构酶 I 抑制剂已在临床前研究中作为单一药物或联合药物在实体瘤中得到评估,其中一些研究包括肉瘤,其中观察到了活性。临床试验评估拓扑异构酶 I 抑制剂治疗肉瘤的效果,结果表明其作为单一疗法疗效有限。与其他细胞毒性药物联合使用时,拓扑异构酶 I 抑制剂已成为特定肉瘤亚型的临床常规治疗手段。伊立替康/长春新碱/替莫唑胺等方案用于治疗复发性横纹肌肉瘤,伊立替康/替莫唑胺和长春新碱/拓扑替康/环磷酰胺通常用于治疗难治性尤文氏肉瘤,拓扑替康/卡铂显示出一定活性
Monge-Concepcion, I. 、Siroka, S.、Berdanier, R.、Barringer, M.、Thole, K. 和 Robak, C.,“非稳定涡轮边缘密封和叶片后缘流动效应”,ASME Turbo Expo 2021 论文集:涡轮机械技术会议和博览会,美国宾夕法尼亚州匹兹堡,GT2021-59273,2021 年。(已接受)。 Siroka, S.、Monge-Concepcion, I.、Berdanier, R.、Barringer, M.、Thole, K.、Robak, C.,“在叶片后缘流存在下将腔体密封效果与时间分辨的边缘密封事件关联起来”,ASME Turbo Expo 2021 论文集:涡轮机械技术会议和博览会,美国宾夕法尼亚州匹兹堡,GT2021-59285,2021 年。(已接受)。Monge-Concepcion, I.、Berdanier, R.、Barringer, M.、Thole, K.、Robak, C.,“评估叶片后缘流对涡轮边缘密封的影响”,ASME。涡轮机械杂志。2020;142(8):081001-081001-12。 doi:10.1115/1.4047611 Berdanier, R.、Monge-Concepcion, I.、Knisely, B.、Barringer, M.、Thole, K. 和 Robak, C.,“不同叶片跨度下定子-转子腔内的密封效果缩放”,ASME。《涡轮机械杂志》。2019 年;141(5): 051007-051007-10。doi:10.115/1.4042423
摘要。背景/目的:复发性骨肉瘤由于异质性和转移性,对一线化疗的反应率较低,是一种难治性疾病。这种疾病需要新药研发和精准治疗。材料和方法:骨肉瘤患者来源的原位异种移植 (PDOX) 小鼠模型模拟了临床疾病,并已确定了有效的临床批准药物和实验药物,尤其是药物组合,具有很大的临床前景。结果:耐药性骨肉瘤的有效治疗包括瑞戈非尼单药治疗,以及替莫唑胺-伊立替康、曲贝替定-伊立替康、索拉非尼-依维莫司、索拉非尼-哌柏西利和奥拉妥单抗-阿霉素-顺铂的组合治疗。结论:PDOX 模型可用于改善骨肉瘤患者的预后,包括个性化、精准治疗。
一项随机、开放标签、阳性对照试验 (BEACON CRC) 评估了 BRAFTOVI 300 mg 每日一次与西妥昔单抗联合使用(初始剂量 400 mg/m 2,随后每周 250 mg/m 2)的安全性,试验对象为 216 名 BRAF V600E 突变阳性转移性 CRC 患者。BEACON CRC 试验 [见临床研究 (14.2)] 排除了有吉尔伯特综合征病史、左心室射血分数异常、QTc 延长 (>480 ms)、未控制的高血压以及有视网膜静脉阻塞病史或当前证据的患者。接受 BRAFTOVI 与西妥昔单抗联合治疗的患者的中位暴露持续时间为 4.4 个月,而接受伊立替康或输注 5-氟尿嘧啶 (5-FU)/亚叶酸 (FA)/伊立替康 (FOLFIRI) 与西妥昔单抗联合治疗的患者的中位暴露持续时间为 1.6 个月。
目的:由于纳米载体的缺点,无载体纳米递送系统的开发在癌症治疗中受到越来越多的关注,但目前对无载体纳米系统能同时实现监测功能的研究较少。本文建立了一种负载姜黄素和盐酸伊立替康的多功能无载体纳米系统,用于胃癌的治疗和监测。方法:本研究制备了前期的盐酸伊立替康-姜黄素纳米系统(该体系命名为SICN)。基于姜黄素的荧光,利用流式细胞术、激光共聚焦显微镜和斑马鱼荧光成像技术研究了SICN在体内和体外的监测功能。此外,还利用HGC-27人胃癌细胞研究了SICN的细胞毒性。结果:流式细胞术和斑马鱼荧光成像监测结果显示,SICN的摄取率明显高于游离姜黄素,排泄率较低。 SICN在细胞和斑马鱼中具有更高的蓄积和滞留。激光共聚焦显微镜监测结果显示,SICN通过巨胞饮、caveolin、网格蛋白介导和非网格蛋白依赖的内吞等多种途径内化进入HGC-27细胞,并在细胞内分布于整个胞浆,包括溶酶体和高尔基体。体外细胞实验表明,SICN纳米粒子比单一组分毒性更大,微酸性条件下HGC-27细胞对纳米粒子的吸收更多,毒性更大。结论:SICN是一种很有前途的无载体纳米粒子,两种单组分联合治疗可发挥协同抗肿瘤作用。当暴露于肿瘤酸性环境中,SICN由于电荷转换而表现出更强的细胞毒性。更重要的是,纳米粒子的自我监测功能得到了发展,为肿瘤的联合治疗开辟了新的思路。关键词:无载体,盐酸伊立替康,姜黄素,多功能纳米粒子
创新的网络安全研究和开发网络安全培训,这些培训将满足其地区能源劳动力的需求。在爱荷华州,这项为期250万美元的两年项目称为Cyderms - Cybers和DERS和微电网分配系统的网络安全和弹性中心。ders是分布的能源,例如风能和太阳能农场或储能技术。微电网是可以连接到较大网格或分离的局部网格系统。安森·玛特森(Anson Martson)工程领域的杰出教授,曼尼马拉·戈文达拉苏(Manimaran Govindarasu)表示,中心的研究人员将通过开发强大的计算机算法以及其他来检测和减轻周围的细胞攻击和系统故障来保护含有风能和太阳能农场和微电网的电网。研究人员将使用人工智能和机器学习工具来帮助检测网格问题和恶意活动。该中心通过项目合作伙伴关系和行业顾问委员会在学术,行业和国家实验室之间带来了协同的合作机会。该中心的合作伙伴是伊利诺伊大学Urbana Champaign,明尼苏达大学,密歇根大学技术大学,国家可再生能源实验室,Argonne National Lab和Ge Vernova。
摘要 引言 侵袭性曲霉病是血液病患者发病和死亡的最重要原因。目前,伏立康唑是侵袭性真菌病的一线治疗药物。伏立康唑的药代动力学个体间差异取决于遗传因素。伏立康唑总代谢的 70%–75% 参与 CYP450,主要是 CYP3A4 和 CYP2C19,其余 25%–30% 的代谢由单加氧酶黄素进行。CYP2C19 单核苷酸多态性可以解释伏立康唑代谢中 50%–55% 的变异性。材料和方法主要目的是比较预先伏立康唑基因分型与常规实践的效率。主要结果是第五天血清伏立康唑是否在治疗范围内。次要结果是与伏立康唑相关的治疗失败和首次给药后 90 天内不良事件的综合变量。总共将招募 146 名可能接受伏立康唑治疗的侵袭性曲霉病风险患者,并进行 CYP2C19 基因分型。如果患者最终接受伏立康唑治疗,他们将被随机分配(1:1 实验/对照)。在实验组中,患者将根据药物遗传学算法接受剂量,包括 CYP2C19 基因型和临床及人口统计信息。在对照组中,患者将根据临床实践指南接受剂量。此外,将进行西班牙国家医疗保健系统 (NHS) 的成本效益评估。将对每个组进行直接成本计算。结论这项试验将提供有关在西班牙 NHS 中实施预防性伏立康唑基因分型策略的可行性和成本效益的信息。伦理与传播 该方案的西班牙语版本已通过拉巴斯大学医院伦理委员会和西班牙药品和医疗器械管理局的评估和批准。 试验结果