在纳米尺度(1 纳米至 100 纳米 (10-9 米))上对结构、电子和系统进行操控被称为纳米技术 [ 1, 2]。金属纳米粒子,尤其是金纳米粒子 (AuNP),因其与入射光的奇妙相互作用而备受关注 [ 3]。在所有金属纳米粒子中,金纳米粒子因具有电、磁、生物传感、等离子体、光子、催化和生物医学特性,在近几十年来引起了最多的关注 [ 4 ]。金纳米粒子对生物医学应用做出了重大贡献,如免疫色谱病原体识别、药物输送、生物标记、光热疗法和癌症光诊断 [ 5 ]。AuNP 在尺寸、形状、溶解度、稳定性和功能方面的可控合成一直是人们研究的课题。合成 AuNPs 的方法通常可分为三类:化学方法、物理方法和生物方法 [6]。化学方法、物理方法和生物方法。合成 AuNPs 的另一种环保方法是通过称为“绿色合成”的生物技术。为了最大限度地减少传统 AuNPs 合成过程中产生的有害化学物质和有毒副产物,生物合成至关重要。目前,不同的 AuNPs 是使用绿色材料生产的,如植物、真菌、藻类、酶和生物聚合物 [7-9]。由于生物合成产生的 AuNPs 高度稳定且特征明确,因此在生物医学应用中使用它们通常更安全,因为这些化合物来自天然材料 [10]。已经采用了几种经济、环保且实用的技术来从微生物 [11]、植物提取物 [12] 中生产纳米颗粒。这些植物提取物在将金转化为纳米颗粒时充当封端剂和还原剂