重金属(HM)被确定为关键的环境污染物,其特征在于其极端毒性,在生态系统中积累的能力以及缺乏降解性。汞以离子形式是最有毒的污染物之一,对免疫系统,神经系统和细胞结构构成了严重的风险。用于检测重金属的电化学方法由于能够产生准确的结果,更快地进行分析并达到更高灵敏度水平而引起了相当大的关注。这项研究的主要目标是开发一个基于碳的传感器,适合确定汞汞(II)。在这里,基于氧化石墨烯和金纳米颗粒的优势,我们开发了用-rgo@au修改的碳传感器。使用透射电子显微镜(TEM)和能量分散性X射线光谱(EDS)对所获得的纳米材料(RGO@au)完全表征。通过循环伏安法(CV)进行CPE/RGOAU传感器的电化学表征,方波阳极剥离伏安法(SWASV)用作确定Hg(II)的典型技术。Hg(II)的氧化峰电流与0.66-1.96 ppm的浓度成正比,检测极限为0.31 ppm。在追求实际应用时,传感器接受了其他测试,以测量水样中的Hg(II)浓度。
引言目前,微电子气体传感器广泛应用于环境监测、通风和空调系统、家用设备和汽车工业[1,2]。它们还用于确定采矿、化学和冶金工业中危险气体的最大允许浓度[3,4]。在众多的金属氧化物半导体中,二氧化锡被认为是最有前途的传感材料[5]。气敏电阻型传感器采用二氧化锡制造,通过测量触点间电阻的变化来检测空气中气体的存在。气体传感器的小型化在保持工作电压的同时,增加了触点间隙中的电场。这会刺激离子吸附气体粒子在活性层表面的迁移,影响气敏装置的整体特性,并实现气体的分析和识别[6,7]。研究金属氧化物半导体结构的电物理特性通常涉及测量介电氧化物层的伏特-法拉特性(通常在高频下)以及具有相对较高电导率的氧化物层在直流下的伏特-安培特性 (IVC)。本研究介绍了基于 SnO 2 /Si 的异质结中电流传输机制的实验结果。
由于其优异的电导率、热稳定性和机械强度,嵌入石墨烯纳米片 (GNP) 的环氧复合材料被研究用作电化学传感应用中的电极材料的潜在用途。在这项研究中,使用三辊技术将石墨烯纳米片与环氧树脂基质(即 Epon 828)一起加工。环氧树脂基质中含有 0.5 至 5 wt.% 石墨烯纳米片的复合材料通过 3 和 5 wt.% 石墨烯纳米片的电化学过程进行表征;观察到显著的电化学性能。在使用 Na2SO4 作为电解质的循环伏安法研究中,加入石墨烯显著增强了电极材料的性能。电导率研究表明,1 wt.% 石墨烯纳米片的渗透阈值,电导率进一步增加,证实了该复合材料作为海水中硫脲电化学传感电极材料的有效性。通过循环伏安法分析验证了环氧-石墨烯电极的灵敏度和选择性令人满意。
该期刊文章的自存档后印本可在林雪平大学机构知识库 (DiVA) 找到:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-178503 注意:引用该作品时,请引用原始出版物。 Delavari, N., Gladisch, J., Petsagkourakis, I., Liu, X., Modarresi, M., Fahlman, M., Stavrinidou, E., Linares, M., Zozoulenko, I., (2021), 循环伏安法下 PEDOT:Tos 薄膜中的水摄入和离子交换:实验和分子动力学研究,大分子,54(13),6552- 6562。https://doi.org/10.1021/acs.macromol.1c00723
本研究涉及通过反流方法的Tulsi Honey掺杂氧化葡萄岩(TH/CEO 2)的便利合成。使用UV-可见,FTIR,TEM和XRD技术对样品进行表征。使用TH/CEO 2在RH-B(Rhodamine b)染料上实施了光催化研究,并在80分钟后显示了95%的降解,在反应的一阶动力学速率和半寿命(t 1/2)周期为42.58分钟。使用镍网状电极在1 M KCL溶液中分析Th掺杂的CEO 2的氧化还原行为,表明电化学特性(例如电容(CSP),扩散系数(D)和可逆性(ER))的氧化还原行为显着改善。使用环状伏安法检测制备的纳米复合材料来检测Hg +2和Pb +2离子的传感器活性。在这里,Hg +2和Pb +2传感器使用准备好的材料展示了更好的传感特性。生成的TH/CEO 2使用2,2-二苯基丙烯酰氢羟基(DPPH)自由基表现出88%的自由基清除活性,IC50值为339.449 mg/ml。
在本工作中,开发了一种使用差异脉冲伏安法技术的伏安法,用于评估抗染料和镇痛药,乙酰氨基酚。制备并表征CuO纳米颗粒。使用了用CuO纳米颗粒(Cuonps)和多壁碳纳米管(MWCNT)制造的玻璃碳电极(GCE)。修饰的电极通过在磷酸盐缓冲液中引入阴离子表面活性剂硫酸钠,显示出改善的阳极峰电流。在生理pH值为7.4的情况下研究了支撑电解质的pH,纳米颗粒悬浮液的量和表面活性剂浓度的影响。使用差异脉冲伏安法,制造的电极显示了对乙酰氨基酚浓度的线性动态范围。从校准图中,计算出的检测极限为5.06 nm,定量极限为16.88 nm。该方法在一天的日期和盘中也测试了其可重现性和测定。开发的过程是有效地应用的,以检测给婴儿施用的小儿口服悬浮液中的对乙酰氨基酚。
In this study, we report for the first time, a method for simultaneous detection of paracetamol (PA) and its toxic impurities, 4-aminophenol (4-AP), as well as commonly co-formulated drugs, ascorbic acid and zinc (AA and Zn (II)), using screen-printed electrodes (SPEs) as a sensing platform.为了改善SPE的电化学性能,使用简单的电极位置技术装饰了铂和镍微结构(PT - Ni)。通过Fe - SEM,TEM,EDX,XRD和AFM测量结果证实了合成的PT - Ni/SPE电极的结构和形态。此外,使用环状伏安法和电化学阻抗光谱法研究了AS制备传感器的电化学表征。在最佳条件下,使用环状体积量,差分脉冲伏安法和方波伏安法技术对4 AP,PA,AA和Zn(II)的含量进行定量。设计的传感器可以提出双重效应,利用Pt的Zn(II)检测效率和PT - Ni检测4-AP,AA和PA。一方面,应准备的PT - Ni/SPE传感器表现出对4-AP和PA的线性响应,两者的范围为0.5至200μm,对于4-AP和
背景和目的:甲氨蝶呤(MTX)是一种广泛使用的抗癌药物,但其过度使用会导致显着的副作用。因此,为其确定设计简单和敏感的分析方法至关重要。实验方法:在这项工作中,基于离子液体(IL)/Ni-CO分层双氢氧化物纳米片(Ni-CO-LLDH)修饰的碳糊电极IL/Ni-CO-LDH/CPE制备电化学传感器。循环伏安法,差异脉冲伏安法和计时度测定法用于评估设计传感器的性能以进行MTX测定。关键结果:IL/Ni-CO-LDH/CPE传感器在线性动力学范围0.02至140.0 µm的差分脉冲伏安法和MTX浓度之间表现出线性关系,检测极限为0.006 µm。IL/Ni-CO-LDH/CPE传感器在实际样品上的回收测试中表现出1.7至3.7%之间的相对标准偏差值,表明该方法的精度。结论:具有成本效益和良好性能的设计传感器对于治疗药物监测和临床诊断可能很有价值。
电池健康预后是电池管理的关键部分,用于确保安全和最佳用法。在本文中提出了一种基于多域适应性的端到端无传感器差异温度伏安挥发性重建和健康估计状态的新方法。首先,使用部分充电或散布曲线来重建差分温度曲线,从而消除了温度传感器测量的需求。偏差容量曲线和重建的差分温度曲线是输入的,然后在端到端的健康估计状态中使用。最后,为了减少源和目标域之间的域差异,将最大平均差异作为额外的损失包括在于提高差分温度曲线重建和健康估计状态的准确性,并使用未标记的测试电池中的未贴标数据。四个数据集,其中包含具有不同电池化学和格式的实验数据和公共数据,当前模式和速率以及外部条件用于验证和评估。实验结果表明,在不同情况下,提出的方法可以满足健康预后,对于差分温度曲线,平均误差小于0.067°C/V,而健康状况为1.78%。结果表明,与没有传统数据驱动的方法相比,差异温度曲线重建的误差降低了20%以上,健康估计状态的误差降低了所提出的方法的47%以上。
我们使用慢性16通道碳纤维电极和快速扫描的环状伏安法(FSCV)研究了伏隔核(NAC)和背外侧纹状体(DLS)中多巴胺(DA)释放的性别差异。电刺激诱导的(ES; 60 Hz)DA释放记录在单人或成对的雄性和雌性大鼠的NAC中。同时记录核心(NACC)和壳(NAC)时,与单个女性和男性相比,NACC的NACC中有更大的ES DA释放。住房不影响男性的ES NAC DA释放。相比之下,雌性大鼠DL的ES DA释放明显高于雄性大鼠。在用甲基苯丙胺治疗之前和之后,这是正确的。此外,在cast割的(铸造)男性和卵形(OVX)女性中,DLS的ES DA释放没有性别差异,这表明这种性别差异的激素依赖性。然而,在完整的和性腺切除大鼠的DL中,女性的da重摄取比男性慢。最后,在4周内研究了60 Hz的内侧前脑束后的DA释放。es da释放随着时间的流逝而增加,表现出敏感性。使用这种新颖的16通道慢性FSCV电极,我们发现社会住房在NACS中的影响,DLS完整大鼠的DA释放性别差异以及DLS摄入和Gonadectomized大鼠DLS的性别差异以及DA重新摄取的性别差异,以及我们报告了Es-eS诱导的DA释放da In dls in dls dls in vivo的敏感性。