1,2,3部门尼日利亚河口河州立大学电气工程大学。摘要:自由空间传播中有一个自由空间路线损失,这是传播路径,在发射器和接收器之间没有障碍物。这被认为是无线电波信号在自由空间传输过程中的损失。为了构建尽管有潜在问题,可以尽可能有效地发挥作用的通信系统,必须确定路径损失。路径损失也已用于无线调查工具和无线电通信来确定天线的信号强度。鉴于无线设备(包括软件和调查工具)的重要性越来越重要,现在可以全面理解无线电路径丢失的想法是有益的。为了全面了解自由空间传播路径损失及其影响的因素,本文的主要目的是模拟现象。MATLAB软件在此过程中用于生成图形,从而为路径损耗提供清晰易于理解的表示。从低6频率范围中选择了两个频率,另外两个频率来自毫波频率范围,结果表明,随着距离的增加,自由空间路径损失增加,并且频率增加,并且毫米损失较大,但可以通过天线增益来减轻损失,并遵循其他建议。关键字:频率,自由空间传播,自由空间传播路径损失,无线电波传播。
摘要。大气湍流通常会阻碍远距离光学成像应用。湍流对成像系统的影响可以表现为图像模糊效应,通常通过系统中存在的相位失真来量化。模糊效应可以根据沿传播路径测量的大气光学湍流强度及其对成像系统内相位扰动统计的影响来理解。获取这些测量值的一种方法是使用动态范围的瑞利信标系统,该系统利用沿传播路径的战略性变化的信标范围,有效地获得影响光学成像系统的像差的估计值。我们开发了一种从动态范围的瑞利信标系统中提取断层扫描湍流强度估计值的方法,该系统使用 Shack - Hartmann 传感器作为相位测量装置。介绍了从快速序列中获得的战略性范围变化的信标测量中提取断层扫描信息的基础,以及典型湍流场景的建模示例。此外,处理算法还用于模拟孤立强湍流层的识别。我们介绍了所选处理算法的基础,并讨论了该算法作为大气湍流分析方法的实用性。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.59.8.081807]
第二章:水下目标跟踪 ................................................................................................22 2.1 声纳系统基本原理 ......................................................................................................22 2.1.1 传输损耗 ................................................................................................................23 2.1.1.1 声速剖面(SVP) ......................................................................................24 2.1.1.2 声音传播路径 ................................................................................................25 2.2 反潜战目标的声源 ......................................................................................................32 2.3 声纳浮标设备 .............................................................................................................34 2.4 被动声纳浮标 .............................................................................................................35 2.5 DIFAR 声纳浮标 .............................................................................................................37 2.5.1.1 系统操作 .............................................................................................................37 2.5.1.2 信号处理技术及其局限性 .............................................................................39 频谱分析 ................................................................................................................40 2.6研究进展与现状................................................................................48 2.6.1 目标检测......................................................
光通信系统和定向能武器会受到大气条件的影响,特别是光学湍流。光学湍流主要由传播路径上的温度变化引起,会导致强度波动,通常称为闪烁。减少闪烁的一种可能方法是通过非相干组合多束激光。为此,将两束和四束 532 nm 高斯激光束组合起来,并通过热空气湍流模拟器产生的光学湍流传播。在 4 m 的传播距离上收集了组合激光束强度数据,并使用沿热空气湍流模拟器中心通道放置的热电偶估计了湍流水平。结果显示,在强湍流条件下,四光束配置中的闪烁减少了 32%,令人欣喜。
分子/气溶胶和原子的吸收 [5, 6]。雨、雪、雾、污染等因素会影响电磁辐射的传输,特别是光波在大气中的传输 [7]。除了上述吸收和散射效应外,折射率波动也会影响光波的传播。在高功率激光器中,吸收还会加热传播路径上的介质,导致光束发散,平均强度的峰值明显降低,这种效应称为“热晕” [8]。然而,激光功率限制和开发更强大激光器的高昂成本等挑战促使人们提出了“光束组合”技术。传统上,有两种光束组合方法:相干光束和非相干光束。在目标上产生高强度的相干光束组合需要线宽非常窄的激光器
摘要 — 故障安全计算是指在发生故障时恢复到非操作安全状态的计算系统。在本文中,我们研究了电路级技术作为在现场可编程门阵列 (FPGA) 上实现故障安全计算过程的缓解策略。在使用开源工具创建的 FPGA 架构中,评估了故障效应通过 FPGA 基元(包括查找表 (LUT)、可配置逻辑块和开关盒)的传播。分析表明,与等效专用集成电路 (ASIC) 版本的故障安全电路相比,可重构架构中存在更多漏洞,因此需要更复杂的冗余电路网络和检查逻辑。提出了一种经过 ASIC 验证的故障安全监控电路版本,并将其与 FPGA 中的等效电路要求进行了比较。固定布局和布线的故障安全电路设计策略有助于减少可能的故障传播路径数量并简化故障安全故障检测电路设计。介绍并讨论了基于 FPGA 的具有报警功能的故障安全电路结构的优点和局限性,以及模拟和形式分析。
通过大气传播的光传播沿传播路径的反射指数(称为光湍流)影响。在大气表面层中,这些波动主要是由于温度和湿度变化的湍流混合。为了提高对光学湍流的理解和预测,提出了塞文河上方大气表面层的表征。气象数据是从传感器阵列中收集的,其中包括位于马里兰州Annapolis的滨水区准备盆地(38.98n,76.46W)的两个声音动态计和一个红外气体分析仪(IRGASON)(IRGASON)。这些仪器的位置位于水线上最多8米的距离上,以分析边界层的预测。阵列安排以优化仪器灯芯上的气流。使用风速,温度,压力和其他参数等特征,可以使用几种不同的方法来计算温度,湿度和折射率的结构参数。这些结构参数是估计激光传播的湍流效应的主要手段。可以从领域数据,诸如hu虫山谷(HV5/7)等湍流漏洞的评估或可以验证恒定的浮标层缩放(Monin-Obukhov)。本文介绍了有关设置,校准,传感器套件的安装以及收集数据的早期发现的工作。
摘要。这篇由两部分组成的论文的第二部分使用波动光学模拟来研究与湍流和时间相关热晕 (TDTB) 相关的蒙特卡罗平均值。目标是研究湍流热晕相互作用 (TTBI)。在接近 1 μ m 的波长下,TTBI 会增加高功率激光束通过分布式大气像差传播时产生的建设性和破坏性干扰(即闪烁)的量。因此,我们使用球面波 Rytov 数、风清除周期数和畸变数来衡量模拟湍流和 TDTB 的强度。这些参数在给定具有恒定大气条件的传播路径时非常有用。此外,我们使用对数振幅方差和分支点密度来量化 TTBI 的影响。这些指标来自点源信标通过模拟湍流和 TDTB 从目标平面反向传播到源平面。总体而言,结果表明,由于 TTBI,对数振幅方差和分支点密度显著增加。这一结果对执行相位补偿的光束控制系统构成了重大问题。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.59.8.081805]
内大陆架是冲浪区和中大陆架之间的区域,表面和底部边界层 (BBL) 在此汇合甚至重叠 ( Lentz 1994 )。在这里,横岸风有助于跨内大陆架的输送 ( Fewings 等人 2008 ),而中大陆架的输送则由埃克曼动力学引起的沿岸风驱动。内大陆架的另一个先前未研究过的显著特征是,内大陆架是内潮汐几乎失去所有能量的区域。后者是我们在这里的重点,并引出了内大陆架作为内潮汐冲浪区的作用的新区分 ( Becherer 等人 2021 ,以下简称第二部分 )。这种内部冲浪区,其中内部潮汐以受水深限制的饱和状态存在,具有与表面重力波冲浪区类似的特征(Thornton 和 Guza 1983;Battjes 1988)。内部潮汐要么在当地产生(Sharples 等人 2001;Duda 和 Rainville 2008;Kang 和 Fringer 2010),要么在传播路径较长的偏远地区产生(Nash 等人 2012;Kumar 等人 2019),将大量能量传输到内架(Moum 等人 2007b;Kang 和 Fringer 2012)。在这里,能量被湍流耗散,产生斜压混合,从而导致水体转化。在内架上,内部潮汐在驱动
一系列飞行试验展示出一种测量空对地倾斜路径上路径分辨光学湍流量(如 C 2 n)的新方法。本文介绍了数据采集试验,试验涉及两束激光束在 8 公里倾斜路径上在一个轨道空中平台和一个静止地面终端之间传播。地面和飞行中的测量数据同时收集,并使用差分倾斜方差 (DDTV) 技术计算 C 2 n 剖面。本文介绍了 DDTV 技术,该技术能够对湍流强度进行路径分辨测量,从而得到 C 2 n 剖面。得到的湍流剖面揭示了最靠近飞机的统计数据中被认为是来自飞机边界层的气动光学污染。因此,气动光学环境的污染可以相对于其余大气传播路径进行量化。最后,本文介绍了将测量的大气湍流剖面与最先进的大气模型进行比较的分析。这些分析超越了 C 2 n 比较,并展示了测量与建模在关键定向能系统传播参数方面的比较,例如格林伍德频率、相干直径、里托夫数、等晕角、泰勒频率、开环抖动和开环斯特列尔比。在空对地和地对空定向能系统的背景下分析了斜路径湍流。