请注意,σ和κ都是张力量,例如,沿x轴的梯度原则上可以导致沿y - 或z轴沿ux量。但是,在大多数情况下,σ和κ的这些非对角线术语是比对角线术语小的数量级,因此我们将讨论限制为本章中的对角线术语。此外,重要的是要意识到该方程。(9.1)和等式。(9.2)是J E(U)和J H(t)的完整关系的第一阶taylor扩展。就本章而言,使用这种线性响应近似值远远超过了理由,鉴于典型的电压Δu<1,000 V和温度差异∆ t <1,000 k在现实世界中应用于大型固体(量V> 1 µ M 3)对应于1 µm Minuse Elively级别的1级和一级<<1级和温度级别的<1级和温度级别的<10k。在此制度中,我们可以将所谓的“ Onsager图片”中的固体视为显微镜,各个部分的组合:假定本节的每个部分都如此之大,以至于可以保持热力学平衡规则,并允许定义温度量化,例如每个单个部分的温度。但是,各个部分相对于彼此而言并不处于热力学平衡状态。从一开始,这似乎是一个显然简化讨论的假设。我们将在本章中看到,实际上并非如此:基本原因是我们
摘要:基于主流的块状结局效果晶体管(Finfet)技术,制造了16 nm-L G P型栅极栅极硅纳米线(Si NW)金属氧化物半氧化物晶体管效应晶体管(MOSFET)。已系统地研究了正常MOSFET的电气特性以及低温时的量子运输的温度依赖性。我们证明了GAA SI NW MOSFET的低温栅极控制能力和身体效应的免疫力,并观察纳米线(110)通道方向子频段结构的两倍退化孔子带的运输。此外,在GAA SI NW MOSFET中证明了明显的弹道传输特性。由于存在典型MOSFET的间隔物,因此在较低的偏差下也成功实现了量子干扰。
图 1. (4,4-DFPD) 2 PbI 4 薄膜的制备和通过 XRD 和 AFM 进行表征。a) 通过滴铸、旋涂和旋涂并伴有真空极化处理沉积 (4,4-DFPD) 2 PbI 4 2D 钙钛矿薄膜的示意图。b) 制备的薄膜的 XRD 图案。插图显示了 Williamson-Hall 图,用于分析薄膜中的应变无序性。通过 c) 滴铸、d) 旋涂和 e) 旋涂并伴有真空极化处理沉积的薄膜的 3D 表面形貌 AFM 图像。
DNA的电荷转移和自组装特性使其成为过去二十年来分子电子的标志。基于DNA的纳米电子应用和设备,使用DNA纳米结构具有可编程性能的快速有效的电荷传输机制。在此过程中,将DNA与无机底物集成至关重要。这种整合可能影响DNA的构象,从而改变电荷传输特性。因此,使用分子动力学模拟和第一原理计算与格林的功能方法结合使用,我们探索了AU(111)底物对DNA构象的影响,并分析其对电荷传输的影响。我们的结果表明,DNA序列引导其在AU底物上的分子构象,对工程师电荷传输特性至关重要。我们证明DNA可以在金底物上波动,随着时间的流逝,对各种不同的构象进行了采样。这些独特的构象之间的能量水平,分子轨道和DNA/AU接触原子的空间位置可能有所不同。取决于序列,在HOMO处,电荷传递在前十个构象之间的不同60倍。我们证明了核碱基的相对位置对于确定轨道之间的构象和耦合至关重要。我们预计这些结果可以扩展到其他无机表面,并为理解未来基于DNA的电子设备的DNA无机界面相互作用铺平了道路。
复合材料是多组分系统,其功能由其成分之间的相互作用决定。化合物的均匀性取决于材料、材料之间的相互作用和合成,并对性能产生重大影响。纳米粒子已被证明可以通过降低界面张力变成表面活性剂来促进不混溶液体的混合 [ 1 ],并可能导致不混溶和可混溶聚合物溶液之间的可逆转变。将磁性纳米粒子添加到分子铁电体中可以合成多铁性材料 [ 2 – 4 ]。尽管自旋交叉复合物本身可以形成纳米粒子 [ 5 – 7 ],但将磁性纳米粒子添加到自旋交叉分子中的研究很少。 [Fe(Htrz) 2 (trz)](BF 4 )(Htrz = 1H-1,2,4-三唑,trz − = 去质子化三唑配体)[7 – 12]就是这样一种自旋交叉复合物,它也已与纳米粒子结合[13, 14]。[Fe(Htrz) 2 (trz)](BF 4 )的特点是自旋态随温度变化而转变,从而引起电导率的变化[9, 15 – 19]。这种特定分子的自旋交叉转变温度通常为 (340–360) K,在接近室温时产生自旋态双稳态[8 – 12, 15 – 20]。通过添加聚苯胺 (PANI) [ 19 , 21 ] 或聚吡咯 [ 21 , 22 ],所得均质复合材料的导通电阻可降低至 < 1 Ω · cm,从而使更小的分子器件成为可能 [ 23 ],而不会因高阻抗而导致长延迟时间。为了了解自旋交叉复合物中自旋态间双稳态协同效应的修改 [ 24 ],已经采用了多种技术 [ 25 – 27 ]。虽然用金属取代 [Fe(Htrz) 2 (trz)](BF 4 ) 中的 Fe 会降低电导率 [ 18 ],但添加 Fe 3 O 4 等金属纳米颗粒可以通过驱动形态变化完全避免此问题。充分利用此类多组分系统的潜力以及由于添加纳米颗粒而产生的修改需要
首次尝试评估半导体天然橡胶的电荷传输特性。合成了四种不同比例的碘-橡胶复合材料,并通过电流密度-电压特性 (JV) 和阻抗谱测试了电荷传输。确定了最佳迁移率值的最佳掺杂比,并讨论了注入势垒高度对迁移率的影响。还尝试将态密度 (DOS) 与迁移率和掺杂比关联起来。在相同的环境和实验条件下,将半导体天然橡胶的传输特性与最流行的 p 型材料之一聚(3-己基噻吩-2,5-二基)(P3HT)进行了比较,以证明其作为经济高效且绿色的替代有机半导体的潜力。
至关重要。[1–3] 人们做出了巨大研究努力,致力于开发新型电池材料,以提高循环寿命、安全性、能量密度和功率密度[4,5],同时研究也集中于理解可以替代主要液体电解质锂离子电池技术的新型电池化学。[6–10] 钠离子技术已成为最有前途的电池应用之一。[11–15] 有趣的是,虽然人们的注意力集中在某种特定的电池化学上,这种化学能使能量密度提高一个数量级[16,17],或在比容量或工作电压方面优于目前可用的电活性材料的特定电极材料上[18–20],但人们往往忽视电池界面在电池的安全性、功率能力、锂沉积物形态、保质期和循环寿命方面发挥的关键作用。[21]