碳 (sp3)-碳 (sp2) 材料有可能彻底改变储能和微电子等领域。然而,在柔性基底上合理设计和印刷碳-碳材料仍然是可穿戴电子技术中的挑战。这项研究展示了用于微型超级电容器的柔性激光诱导石墨烯 (LIG)-硼掺杂金刚石纳米壁 (BDNW) 混合纳米结构的可扩展制造。聚酰亚胺薄膜上的直接激光写入通过 BDNW 粉末的存在进行调节,其中 BDNW 在 CO2 激光波长下的明显吸光度会提高局部薄膜温度。激光照射引起的热冲击在金刚石晶粒边界处产生石墨化和无定形碳,从而增加了 LIG-金刚石界面之间的热和电荷传输能力。样品进一步用 O2 等离子体处理以调节润湿性或改善微型超级电容器装置性能。石墨烯的出色电特性、金刚石的卓越电化学稳定性以及含氧基团的必要贡献,使其具有显著的电荷存储容量(18 mF cm − 2 @ 10 mV s − 1 )和循环稳定性(10 000 次循环后保持 98%),优于大多数最先进的基于 LIG 的超级电容器。此外,尽管机械应力极大,这些微型超级电容器仍保持其出色的电化学性能,因此有望成为高功率、柔性/可穿戴电子产品。
摘要 — 空分复用是一种广泛使用的技术,可提高无线和光通信系统中的数据传输能力。然而,紧密排列的空间信道会引起严重的串扰。高数据速率和大通道数对使用传统数字信号处理算法和电子电路解决串扰提出了严格的限制。为了解决这些问题,本文提出了一种将高速硅光子器件与新型盲源分离 (BSS) 算法相结合的硅光子系统。我们首先演示了如何使用光子 BSS 消除用于数据中心内通信的短距离多模光纤互连中的模态串扰。所提出的光子 BSS 系统继承了光子矩阵处理器的优势和 BSS 的“盲性”,从而实现了卓越的能源和成本效率以及更低的延迟,同时允许使用亚奈奎斯特采样率和在自由运行模式下恢复信号,并在信号格式和数据速率方面提供无与伦比的灵活性。最近,人们已经证明了使用光子处理器进行模式串扰均衡的可行性,并借助训练序列。相比之下,我们的方法光子 BSS 可以解决更困难的问题,即使接收器对任何数据速率和调制格式透明,并且适用于速度慢且经济高效的电子设备。在
模式分割的多路复用技术与几种模式ERBIUM掺杂纤维放大器(FM-EDFA)相结合,显示出解决标准单模光纤(SSMF)传输系统的容量限制的重要潜力。但是,在FM-EDFA中产生的差异模式增益(DMG)从根本上限制了其传输能力和长度。在此,提出了使用飞秒激光微加工来调整折射率(RI)的创新DMG均衡策略。可变模式依赖性衰减可以根据FM-EDFA的DMG曲线来实现,从而实现DMG均衡。为了验证提出的策略,研究了常用FM-EDFA配置的DMG均衡。模拟结果表明,通过优化飞秒激光尾区域的长度和RI调节深度,在3个线性偏振(LP)模式组中,最大DMG(DMG MAX)在10 dB中降低了10 dB,而平均DMG(dmg ave)的平均dmg(dmg ave)。最后,实验证明了一个2-LP模式DMG均衡器,导致DMG最大最大从2.09 dB减少到0.46 dB,并且在C频带上将DMG AVE从1.64 dB降低到0.26 db,仅插入插入率为1.8 db。此外,使用5.4 dB实现了最大可变DMG均衡范围,满足了最常用的2-LP模式扩增方案的要求。
对网络能力的不断升级的要求催化了太空层多路复用(SDM)技术的采用。随着多核光纤(MCF)制造的持续进展,基于MCF的SDM网络被定位为可行且有前途的解决方案,可在多维光学网络中实现更高的传输能力。然而,借助基于MCF的SDM网络提供的广泛网络资源带来了传统路由,调制,频谱和核心分配(RMSCA)方法的挑战,以实现适当的性能。本文提出了一种基于基于MCF的弹性光网(MCF-eons)的深钢筋学习(DRL)的RMSCA方法。在解决方案中,具有基本网络信息和碎片感知奖励函数的新型状态表示旨在指导代理学习有效的RMSCA策略。此外,我们采用了一种近端策略优化算法,该算法采用动作面膜来提高DRL代理的采样效率并加快培训过程。用两个不同的网络拓扑评估了所提出的算法的性能,其交通负荷不同,纤维具有不同数量的核心。结果证实,所提出的算法在将服务阻断概率降低约83%和51%方面优于启发式方法和最先进的基于DRL的RMSCA算法。此外,提出的算法可以应用于具有和没有核心切换功能的网络,并且具有与现实世界部署要求兼容的推理复杂性。
800-172rev3 的初始公开草案的一个重要问题是,它的变化是为了与 NIST SP 800-53 中的安全控制语言保持一致,而不是保留 -172rev0 中使用的专用安全要求声明。NIST SP 800-172rev0 源自一项旨在将数据与外国对手(尤其是高级持续性威胁 (APT))隔离的研究。最初的 800-172 要求声明是从该研究中采纳的,专门为对抗 APT 而构建。虽然每个 800-172rev0 要求通常与一个或多个 800-53rev5 控制相关联,但定制的 800-172rev0 要求在应对 APT 风险方面的有效性超过了这些相关 800-53 控制的总和。因此,放弃定制的 800-172rev0 安全要求/讨论并转换为 800-172r3 中的 800-53rev5 控制将导致系统响应 APT 的能力低于采用更具体的 -172rev0 要求的系统。例如,实施安全信息传输能力 (3.1.3e) 的重要 800-172rev0 要求已被撤销,并被远不那么具体的“流程执行”800-53r5 控制取代。在另一个例子中,由于 800-53r5 措辞的变化,172rev0 3.14.4e 中定期从已知受信任状态刷新系统组件的要求已更改为 03.14.04E 要求从受信任来源刷新,但没有要求实际刷新 IT(这是重点)。以下许多评论都与这个一般问题有关:向 800-53r5 控制文本的过渡不必要地降低了原始 800-172rev0 要求的有效性。
宽带电力线通信 (BPLC) 研究。从绿色环境和循环经济的角度来看,该技术利用电网的现有基础设施,通过利用配电网的固有潜力来促进数据传输能力,实现成本效益高且精简的部署方法。BPLC 可以提高应用该技术的网络的安全性和维护性,而提供的服务及其质量的提高,则增加了对强大通信技术的需求。这对于提高服务质量和优化资源至关重要。BPLC 技术应支持网络数据和其他传感器派生信息的传输,从而能够实施有用的政策以降低维护成本和运营,从而在预测性维护中发挥关键作用。这要归功于传感和通信集成。由于缺乏有关高频数据传输信道中的噪声和无意发射的知识,因此需要法规和标准、实验活动、统计和确定性模型以及信道特性,以确保在考虑的环境中减少电磁 (EM) 发射。为了减少电磁辐射,我们用不同的方法分析了通信信道的频率选择性和其他特性,例如统计和散射方法。文献中开发并使用了不同的方法来增强通信的稳健性,尽管存在高噪声场景和信道的频率选择性。学生专注于基础知识、架构、可能的应用、与使用环境的差异。这项研究的重点是用不同的方法表征传输信道,每种方法的优缺点,以及法规和标准。
能源生产和交通领域的脱碳需要立即采取行动,增加可再生能源技术的使用,以应对全球变暖。[1–3] 与此同时,可再生能源在能源网中的系统安全整合在很大程度上取决于能源供应、传输能力和需求在所有时间尺度(短期到季节性或年度)以及不同系统层级(分散式和集中式)上的灵活性。[4–8] 这只能通过开发综合存储和燃料系统来实现,该系统需要涉及不同载体(热能、燃料和电力)的一系列不同技术。[9] 此外,需要有效发展跨部门整合,以促进可持续的能源转型。尤其是能源存储技术被视为系统灵活性的重要支柱,为部门耦合提供了巨大的潜力。 [10] 现有的技术包括不同的二次电池(锂离子或氧化还原液流电池)、机械能储存(如抽水蓄能或压缩空气储能)以及将可再生电力转换为二次能源载体(即电转氢、电转甲烷、电转氨等)。[11–14] 事实证明,电池通过提供广泛的电网服务,是短期缓解电网波动(可再生能源发电过剩和短缺)的最合适的解决方案。[11–13] 同时,对于目前提议的较长时间的能源载体,PtX 技术通常被称为将可再生和无碳电力转化为燃料的理想途径。 [15] 与其他能量载体相比,H2 以这种方式提供了最高的质量能量密度,但对于较长的存储时间,其较低的体积能量密度限制了其应用,这主要是由于 H2 存储量大且成本高昂。[16]
传感策略正在发展越来越多地集中在超低检测阈值和高度选择性设备上。这些性能可以通过纳米技术来启用,这要归功于印度定义,自上而下的结构[1-3]或化学/生化获得的,即自下而上的构造[4-6]。可以用基于石墨烯的纳米结构来表示自上而下和自下而上的方法之间的一种桥梁。石墨烯是一种二维材料,该材料由六边形晶格结构中的单层碳原子组成[7]。Andre Geim和Konstantin Novoselov于2004年隔离并描述了石墨烯,这一成就于2010年获得了诺贝尔物理奖[8]。 使用关键字“石墨烯”在2023年11月进行的一项科学数据库研究产生了203,000多篇论文,其中包括大约10,000篇评论论文。 材料的特殊特性,已在不可数的出色评论中进行了详细描述(例如,参见[9-11])允许其在几乎无限的应用中使用,涵盖了当今人类活动的不同技术和科学相关领域。Andre Geim和Konstantin Novoselov于2004年隔离并描述了石墨烯,这一成就于2010年获得了诺贝尔物理奖[8]。使用关键字“石墨烯”在2023年11月进行的一项科学数据库研究产生了203,000多篇论文,其中包括大约10,000篇评论论文。材料的特殊特性,已在不可数的出色评论中进行了详细描述(例如,参见[9-11])允许其在几乎无限的应用中使用,涵盖了当今人类活动的不同技术和科学相关领域。在一些最成功和/或研究的中,有可能提到一般的电子和光电子,对于这些电子和光电子,石墨烯的存在及其衍生物可以改善设备的电子传输[12-15];与能量相关的应用[16,17],其中再次,石墨烯的电子传输能力有助于改善例如电池和电容器的整体特性;催化[18,19],该领域利用了石墨烯/石墨烯衍生物所实现的超高表面积及其增强的电子传输特性,以提高化学反应的整体产量;药物[20-23],其中石墨烯衍生物(特别是石墨烯氧化物)与生物分子相互作用的能力用于实施药物递送,提供用于热破坏癌细胞的选择性电气吸收,用于成像以及许多其他生物医学目的[24,25];复合材料的机械增强和/或复合材料的功能修饰,其中通常通过创建能够承受非常的材料来利用石墨烯衍生物的特殊机械电阻。中,有可能提到一般的电子和光电子,对于这些电子和光电子,石墨烯的存在及其衍生物可以改善设备的电子传输[12-15];与能量相关的应用[16,17],其中再次,石墨烯的电子传输能力有助于改善例如电池和电容器的整体特性;催化[18,19],该领域利用了石墨烯/石墨烯衍生物所实现的超高表面积及其增强的电子传输特性,以提高化学反应的整体产量;药物[20-23],其中石墨烯衍生物(特别是石墨烯氧化物)与生物分子相互作用的能力用于实施药物递送,提供用于热破坏癌细胞的选择性电气吸收,用于成像以及许多其他生物医学目的[24,25];复合材料的机械增强和/或复合材料的功能修饰,其中通常通过创建能够承受非常
缩略词 扩展 AAAC 全铝合金导体 ABT 基于可用性的费率 ACSR 铝导体 钢筋 AIS 空气绝缘变电站 ATC 可用传输能力 BESS 电池储能系统 CAGR 复合年增长率 CCAI 印度煤炭消费者协会 CEA 中央电力局 CERC 中央电力监管委员会 CICA 复合绝缘横担 ckm 电路公里 [线路长度(公里)x 电路数] CSD 控制开关设备 CSIRT 计算机安全事件响应小组 CTU 中央输电公用事业 DISCOM 配电公司 DLR 动态线路额定值 EHV 超高压 EMT 电磁瞬态 EPS 电力勘测 FACTS 柔性交流输电系统 GDP 国内生产总值 GEC 绿色能源走廊 GIL 气体绝缘线路 GIS 气体绝缘变电站 GNA 通用网络接入 GW 千兆瓦(1 GW =1000 MW) HEP 水力发电厂/项目 HTLS 高温低垂 HVAC 高压交流电 HVDC 高压直流电 ICT 互连变压器 IEEE 电气电子工程师协会 IGBT 绝缘栅双极晶体管 Intra-STS 州内输电系统 IPP 独立电力生产商 ISGS 州际发电站 ISTS 州际输电系统 IWPA 印度风能协会 kV 千伏 LiDAR 光检测和测距 LILO 线路输入线路输出 MNRE 新再生能源部 MoEF&CC 环境、森林和气候变化部 MoP 电力部 MPLS 多协议标签交换 MSC 机械开关电容器 MSR 机械开关电抗器 MU 百万单位(1 MU =10 6 kWh) MVA 兆伏安(1 MVA = 10 6 VA)
缩略词 扩展 AAAC 全铝合金导体 ABT 基于可用性的费率 ACSR 铝导体 钢筋 AIS 空气绝缘变电站 ATC 可用传输能力 BESS 电池储能系统 CAGR 复合年增长率 CCAI 印度煤炭消费者协会 CEA 中央电力局 CERC 中央电力监管委员会 CICA 复合绝缘横担 ckm 电路公里 [线路长度(公里)x 电路数] CSD 控制开关设备 CSIRT 计算机安全事件响应小组 CTU 中央输电公用事业 DISCOM 配电公司 DLR 动态线路额定值 EHV 超高压 EMT 电磁瞬态 EPS 电力调查 FACTS 柔性交流输电系统 GDP 国内生产总值 GEC 绿色能源走廊 GIL 气体绝缘线路 GIS 气体绝缘变电站 GNA 通用网络接入 GW 千兆瓦(1 GW =1000 MW) HEP 水力发电厂/项目 HTLS 高温低垂 HVAC 高压交流电 HVDC 高压直流电 ICT 互连变压器 IEEE 电气电子工程师协会 IGBT 绝缘栅双极晶体管 Intra-STS 州内输电系统 IPP 独立电力生产商 ISGS 州际发电站 ISTS 州际输电系统 IWPA 印度风能协会 kV 千伏 LiDAR 光检测和测距 LILO 线路输入线路输出 MNRE 新再生能源部 MoEF&CC 环境、森林和气候变化部 MoP 电力部 MPLS 多协议标签交换 MSC 机械开关电容器 MSR 机械开关电抗器 MU 百万单位(1 MU =10 6 kWh) MVA 兆伏安(1 MVA = 10 6 VA)