为确保长期安全和性能,地质核废料处置库需要低渗透性屏障,如膨润土缓冲层和/或页岩围岩。页岩不仅渗透性低,而且容易发生随时间变化的变形(即蠕变),从而修复损伤,但页岩蠕变对核废料处置库长期性能的影响尚不清楚。特别是,页岩的各向异性(即层理)可能对其蠕变行为产生重大影响,从而影响核废料处置库的长期性能。在本研究中,进行了数值模拟,目的是展示各向异性页岩蠕变对页岩中通用地质核废料处置库的应力和渗透性演变的影响。模拟中使用了 TOUGH-FLAC 模拟器,这是一种热-水力 (THM) 耦合数值代码。为实现该目标,对各向异性页岩蠕变模拟结果与不同模拟工况(无蠕变(即弹性蠕变)、各向同性蠕变和长期蠕变页岩工况)的结果进行了比较。比较结果表明,弹性和各向同性蠕变页岩工况分别导致对处置库应力和渗透率的估计过高和低估,而长期蠕变页岩工况后期积累的蠕变大于前期,有助于在保持压缩球应力的同时抑制较大的剪应力和拉应力的形成,从而导致渗透率水平持续较低。这些结果表明,使用弹性和各向同性蠕变形成模型进行性能评估将提供应力和渗透率的上限和下限估计,而各向异性蠕变形成模型将给出更合理的估计,具有长期蠕变特性的页岩将对核废料处置库的安全性和性能的许多方面有益。
摘要:遥感 (RS) 目前被视为用于科学目的的入侵和扩张植物测绘的标准工具之一,并在自然保护管理中得到越来越广泛的应用。RS 方法的适用性由其局限性和要求决定。最重要的限制之一是物种覆盖率,在此覆盖率下分类结果是正确的并且对自然保护有用。2017 年在波兰三个地区开展的主要目标是确定可以通过 RS 方法识别目标物种的最小覆盖率。本研究的第二个目标与方法的要求有关,即根据多边形数量和目标物种的丰度百分比覆盖率优化目标物种的训练多边形集。我们的方法必须易于使用、有效且适用,因此使用基本栅格集(最小噪声分数 (MNF) 变换后的前 30 个通道(来自光谱范围为 0.4–2.5 µ m 的 HySpex 传感器的高光谱数据马赛克)和常用的随机森林算法进行分析。该分析使用空间分辨率为 1 m 的机载高光谱数据对一种入侵植物和三种扩张植物(两种草类和两种大型多年生植物)进行分类。地面训练和验证数据集与机载数据收集同时收集。在测试不同的分类场景时,仅更改目标物种的训练多边形集。分类结果基于三种方法进行评估:准确度测量(Kappa 和 F1)、具有不同物种覆盖度的子类中的真阳性像素以及与现场制图的兼容性。分类结果表明,要将目标植物物种分类到可接受的水平,训练数据集应包含物种覆盖度在 80-100% 之间的多边形。仅使用具有可变但较低覆盖度(20-70%)的物种的多边形进行训练,并在 80-100% 范围内缺失样本,导致地图不可接受,因为对目标物种的估计过高。考虑到生态系统是异质的,我们在物种覆盖度超过 50% 的地区实现了物种的有效识别。这些研究的结果开发了一种现场数据采集方法,以及在机载数据采集以及地面采样的训练和验证中同步的必要性。
Izza Usman Bajwa 1 , Samuel Sigaud 1* 1 Accumol Inc.,加拿大艾伯塔省卡尔加里 * samuel.sigaud@accumol.com 摘要 磁性粒子通常用于从血液样本中分离特定类型的细胞。从这些细胞中提取的基因组 DNA 中的残留粒子会干扰紫外吸收分光光度法的浓度测量。在本研究中,我们在谱系特异性嵌合体分析工作流程中确定了紫外分光光度法 DNA 定量的不准确程度。我们发现残留磁性粒子和 RNA 的存在会导致对 DNA 浓度的估计过高。简介使用磁性粒子从血液样本中分离特定类型细胞是诊断或免疫遗传学实验室的常用技术。例如,谱系特异性嵌合体分析的典型工作流程包括从血液样本中分离 T 淋巴细胞、髓细胞或其他细胞类型,然后提取基因组 DNA,然后进行 PCR 或 qPCR 1 。提取后通常会检查 DNA 浓度和质量,以确保下游 PCR 反应在最佳条件下进行。根据 DNA 提取方法,在最终 DNA 样本中可能会发现用于细胞分离步骤的残留磁性粒子。虽然这些粒子通常不会干扰后续的 PCR 反应,但它们可能会影响 DNA 定量步骤。紫外吸光度分光光度法是评估 DNA 浓度和纯度最广泛的方法。它速度快,不需要使用标准曲线或特殊试剂。它使用非常少量的 DNA,尤其是使用无比色皿分光光度计(如 NanoDrop 仪器(ThermoFisher Scientific))进行时。然而,紫外吸光度对 DNA 2 不具有选择性。浓度测量可能会受到污染物的影响,例如 RNA、蛋白质、DNA 提取过程中使用的化学品或用于细胞分离的磁性粒子。为了克服这些问题,已经开发出荧光 DNA 结合染料 3。这些化合物与双链 DNA 结合时会显著增强荧光。它们具有高度的特异性和灵敏度,现在被认为是 DNA 定量的黄金标准。然而,与紫外分光光度法相比,荧光测量更耗时,需要使用昂贵的试剂,并需要实现 DNA 标准曲线。由于这些原因,当许多样本需要快速处理时,例如在分子诊断实验室中,紫外分光光度法仍然是确定 DNA 浓度的首选方法。本研究的目的是确定在谱系特异性嵌合体分析工作流程中紫外分光光度法 DNA 定量的不准确程度。我们研究了残留磁粒子对 DNA 浓度和质量测量的影响,并提出了提高测量准确性的建议。