2.5-DOF 两个半自由度 6-DOF 六自由度 AFSIM 高级仿真、集成和建模框架 API 应用程序接口 BFS 基本可行解决方案 CAP 控制预期参数 CFD 计算流体动力学 CS 控制面 CV 控制变量 DoD 国防部 ISRES 改进的随机排序进化策略 LQR 线性二次调节器 MATLAB 矩阵实验室 NASA 美国国家航空航天局 NDI 非线性动态反演 NED 东北向下 NLOPT 非线性优化 PI 比例积分控制 TSPI 时间空间位置信息 UAV 无人驾驶飞行器 WGS84 世界大地测量局 1984 HALE 高空长航时飞机
计算机视觉领域的关键研究课题之一是对象检测。在实例级别,它确定图像中感兴趣对象的类别和位置信息。在当今社会,随着车祸率的上升,汽车保险公司每年因索赔泄漏而花费数百万美元。在保险行业,基于机器学习和深度学习的人工智能技术可以帮助解决数据分析和处理、欺诈检测、风险降低和索赔自动化等问题 [1,2]。然而,开发当前的应用程序来解决这些问题仍然很困难,特别是在使用深度学习评估汽车损坏时。深度学习是解决复杂问题的有效方法,但它需要更多的资源来构建模型,即深度学习需要大量的数据集并且需要更长的计算时间。
BLDC 电机使用电子换向来控制流过绕组的电流。BLDC 电机在转子上使用永磁体。BLDC 电机包含转子位置传感器电子元件,因此绕组的电源输入波形与正确的转子位置一致。由于电刷中没有功率损耗,因此电机效率得到提高。在 BLDC 电机中,定子缠绕有以多相配置连接的电磁线圈,提供旋转磁场,电枢由带有永磁极的软铁芯组成。传感设备定义转子位置。换向逻辑和开关电子元件将转子位置信息转换为定子相的正确激励。传感设备包括霍尔效应传感器、绝对编码器、光学编码器和解析器。电子控制器可以单独使用,也可以与电机封装在一起。
地球同步 (GSO) 区域的光学勘测通常需要在天空覆盖范围、勘测深度和成本之间取得平衡。使用商用现货 (COTS) 组件可以合理的成本实现大面积勘测,但这些系统的孔径仅限于 30 厘米左右。孔径超过 1 米的大型望远镜可以探测微弱碎片群以发现分米级的物体,但通常视野较小(约 1 平方度)并且无法大规模商业化使用。因此,尝试使用大型望远镜探测微弱碎片群的勘测通常仅限于对已知碎裂事件的目标观测。否则,视野较小再加上想要覆盖更多天空会导致检测到的物体的位置信息非常稀疏或有限。
(i) 用户反馈:通过数字用户反馈平台主动收集和使用数据,以了解、跟踪和管理建筑内的居住者或居民体验:• 用户模式。• 舒适度(热、视觉、听觉、嗅觉和空间,包括位置信息)。 (ii) 社区体验:一个用户友好的数字平台,使建筑居住者或居民能够方便地使用建筑及其社区内的各种服务。 (iii) a. 电子公告板:改善住宅建筑社区内的沟通,使信息共享、居民参与和提升整体生活体验变得更加容易。b. 创新使用电子公告板系统。 (iv) a. 包裹递送管理:一个用户友好的包裹递送管理系统,可提高居民的便利性和满意度,并简化物业管理的运营。b. 创新使用包裹递送管理系统。
费米大面积望远镜等太空伽马射线望远镜已使用单面硅条探测器以高分辨率测量入射伽马射线产生的带电粒子的位置。在康普顿区及以下的能量下,需要单个探测器内的二维位置信息。双面硅条探测器是一种选择;然而,这种技术难以制造,大阵列易受噪声影响。这项工作概述了单片 CMOS 有源像素硅传感器 AstroPix 的开发和实施,用于未来的伽马射线望远镜。基于卡尔斯鲁厄理工学院使用 HVCMOS 工艺设计的探测器,AstroPix 有可能保持中能伽马射线望远镜所需的高能量和角分辨率,同时通过 CMOS 芯片的双重检测和读出功能降低噪声。介绍了 AstroPix 的开发和测试状态以及未来望远镜的应用前景。
高清地图(HD-MAP)的至关重要目的是为地图元素提供厘米级别的位置信息,并在自主驾驶中的各种应用中扮演着关键的角色,包括本地化[6,23,32,33,35,38]和Navigation [1,2,11]。传统上,HD-MAP的构建是通过基于SLAM的方法[30,40]离线进行的,这既是耗时又是劳动力密集的。最近的研究努力已转向使用船上的预定范围内的本地地图的建造。尽管许多现有的作品框架构造作为语义序列任务[17,24,27,29,41],但这种方法中的栅格化表示表现出冗余的信息,缺乏地图元素之间的结构关系,并且通常需要广泛的后处理工作[17]。响应这些局限性,MAPTR [19]采用了一种端到端的方法来构建vecter ver的地图,类似于Detr范式[4,5,21,42]。
同步系统最初用于巴拿马运河的控制系统,将闸门和阀杆位置以及水位传输到控制台。由此,海军设计师意识到位置信息可用于海军舰艇的潜力。该传感器的原始名称是 Selsyn,实际上是一个品牌名称。后来将其重新命名为 synchro,作为通用传感器名称。早期的海军应用包括 20 世纪 20 年代首次开发的火控系统的枪支定位。同步器会将当前的枪支位置传输到火控系统,然后将所需位置传回给炮手。早期的定位系统只是移动指示器刻度盘。随着技术的发展,进入 20 世纪 30 年代,人们发明了增强威力的方法,因此,无需移动简单的刻度盘来定位,而是可以直接移动实际的枪支和炮塔。