尽管在抑制微振动方面取得了重大进展,但仍然需要真正无振动的替代性低温冷却技术。例如,这已在欧空局制定的欧洲空间领域空间技术需求路线图(即欧洲空间技术协调进程)中有所体现。主要驱动力之一是高质量卫星数据的市场不断增长,这些数据服务于无数的经济、科学和社会目标。虽然这一趋势起源于传统的政府资助的空间计划,但市场上新空间技术公司的数量和活动正在呈指数级增长。除了消除微振动之外,新空间趋势还需要更小、更便宜、更可靠的低温冷却器。因此,小型化、降低成本和可靠性也是关键挑战。
我们建议使用基于光纤的干涉仪搜索标量超轻暗物质(UDM),其颗粒质量在10 - 17-17-10-10 - 13-11 eV = C2ð10-3-3 - 10 Hz。由固体芯和空心芯纤维组成,该提出的检测器将对纤维折射率的相对振荡敏感,这是由于标量UDM诱导的调节型在细胞结构常数α中的调制。我们预测,通过实施检测器阵列或低温冷却,提出的基于光纤的标量UDM搜索有可能达到参数空间的新区域。这种搜索特别适合探测暗物质的太阳光晕,其灵敏度超过了先前的暗物质搜索在粒子质量范围7×10-17-17-2×10-14 eV = C 2上。
自 20 世纪 80 年代以来,可调谐半导体激光光谱仪一直是 NASA 地球科学的重要组成部分 1 。早期的高空飞机光谱仪使用低温冷却铅盐激光器来测量万亿分之一级别的化学物质,从而有助于了解关键的地球系统。随着可调谐激光器逐渐成熟并可在室温条件下运行,可调谐激光光谱仪的同步小型化使得它们可以集成到 NASA 行星科学平台中,例如火星好奇号探测器上的可调谐激光光谱仪,以了解火星上的地球化学过程和可能的生命特征 2 。NASA 还投资了可调谐激光光谱仪演示,以监测对国际空间站上载人航天至关重要的气体 3 。LAMS 是第一个用于大气监测和载人航天环境中环境控制与生命支持系统 (ECLSS) 硬件反馈控制的可调谐激光光谱仪系统。有关这一目标的动机和之前 TLAS 的开发将在其他地方描述 4 。
摘要 美国宇航局地球科学技术办公室 InVEST(地球科学技术空间验证)计划资助的 HyTI(高光谱热像仪)任务将演示如何从 6U 立方体卫星平台获取高光谱和空间长波红外图像数据。该任务将使用空间调制干涉成像技术生成光谱辐射校准的图像立方体,该立方体有 25 个通道(8-10.7 m 之间,分辨率为 13 cm -1),地面采样距离约为 60 m。HyTI 性能模型表明窄带 NE Ts 小于 0.3 K。HyTI 的小巧外形是通过使用无活动部件的法布里-珀罗干涉仪和 JPL 的低温冷却 HOT-BIRD FPA 技术实现的。发射时间不早于 2021 年秋季。HyTI 对地球科学家的价值将通过机载处理原始仪器数据来生成 L1 和 L2 产品来展示,重点是快速提供有关火山脱气、地表温度和精准农业指标的数据。
雷神空间与机载系统正在积极推进这一系统,因为该系统具有有益的探测器化学特性。砷掺杂硅 (Si:As) 焦平面为长波红外 (LWIR) 天文学和地球传感应用提供了卓越的性能;然而,操作需要低温冷却至 12 K 以下。现有的最先进的空间和机载闭式循环低温冷却器系统通常无法同时将所需负载保持在 12 K / 55 K 以下,因此通常采用储存制冷剂系统。所需制冷剂的数量相当大,很容易超过仪器的质量和体积。因此,发射质量和体积限制对任务寿命产生了严重限制。因此,闭环低温解决方案不仅可以提供更小的质量和体积,还可以提供更长的任务寿命和更低的物流成本。迄今为止,雷神公司已经设计、建造和测试了三种不同的热机械单元 (TMU),以满足 Si:As 和其他系统的要求:AFRL 资助的高容量-RSP2 (HC-RSP2)、IRAD 资助的 LT-RSP2 和生产 LT-RSP2。
量子科学和技术中的许多协议都需要在纯量子态下初始化系统。在大规模谐振器的运动状态背景下,这使得研究难以捉摸的量子-经典跃迁的基本物理成为可能,并以增强的灵敏度测量力和加速度。激光冷却一直是制备量子基态机械谐振器的首选方法,量子基态是最简单的纯态之一。然而,为了克服热浴的加热和退相干,这通常必须与低温冷却相结合。在这里,我们直接从室温激光冷却超相干、软夹紧机械谐振器,使其接近量子基态。为此,我们实施了多功能中间膜装置,该装置具有一个光纤镜和一个声子晶体镜,在室温下已经达到了接近 1 的量子协同性。此外,我们引入了相干和基于测量的量子控制技术的强大组合,这使我们能够减轻热互调噪声。我们达到的最低占用率是 30 个声子,受测量不精确的限制。消除低温冷却的必要性应该会进一步促进光机械量子技术的传播。© 2023 Optica Publishing Group 根据 Optica 开放获取出版协议的条款
简介 - 单个光子是量子光学研究和量子技术的基本资源。单光子源(SPS)[1,2]的进步已经在量子通信[3,4],量子计算[5,6]和量子传感[7]方面开放了新的机会。在量子键分布(QKD)的背景下,理想的SP可以接近通道损耗极限的表现。此外,利用SPS的QKD系统可以消除对诱饵状态的需求,从而降低实验和数据处理的复杂性。最重要的是,基于SPS的QKD系统应超过相干状态的极限[8],这突出了单个光子在增强QKD性能方面的潜力。近年来已经报道了许多关于QKD的QKD研究[9,10]。但是,这些来源中的大多数[11-14]都需要低温冷却,这阻碍了其广泛的商业应用。虽然在六角硼n- tride(HBN)中使用室温SPS [15-17]的方法已经解决了这个问题,但不幸的是,这些来源在电信波长时不运行,从而限制了其用于基于长距离纤维的QKD的应用。在2018年,在硝酸盐(GAN)晶体中发现了电信波长范围内发出的固态SPS,并在室温下运行[18]。这些SP显示了点数发射极,稳定触发的Photolumi-
印度亚瓦特马尔贾瓦哈拉尔达尔达工程技术学院 摘要:对高效可靠的能源存储解决方案的需求不断增长,导致人们对比较各种技术的兴趣日益浓厚。本文全面分析了锂离子 (Li-ion) 电池和超导磁能存储系统 (SMES) 这两大能源存储领域的突出竞争者。这两种技术都是根据能量密度、循环寿命、效率和环境影响等关键参数进行评估的。锂离子电池广泛用于便携式电子设备和电动汽车,具有高能量密度和可扩展性。然而,对其有限的循环寿命、安全问题和环境考虑(尤其是关于锂的提取和处置)的担忧促使研究人员探索替代解决方案。另一方面,超导磁能存储系统利用超导材料的独特性能来有效地存储和释放电能。SMES 系统以其快速响应时间、高效率和长循环寿命而闻名。然而,与超导材料高成本和低温冷却系统需求相关的挑战阻碍了其广泛采用。本文对这些技术进行了比较评估,考虑了它们的优势、劣势和潜在应用。分析旨在指导决策者和研究人员根据特定要求和约束选择最合适的储能解决方案。此外,本文讨论了这两种技术的新兴进展,并探讨了可以利用锂离子电池和 SMES 系统的优势来解决各自固有局限性的潜在混合方法。关键词:可靠能源