摘要:长期植入硬膜外脑电图 (ECoG) 电极会导致硬脑膜增厚和界面部位周围纤维化增生,这对于用于监测各种神经退行性疾病的慢性神经 ECoG 记录应用是一个重大问题。本研究介绍了一种在柔性 ECoG 电极上开发光滑液体注入多孔表面 (SLIPS) 的新方法,用于慢性神经界面,具有增加细胞粘附性的优势。在演示中,电极是在聚酰亚胺 (PI) 基板上制造的,并使用铂 (Pt) 灰来创建多孔纳米锥结构以注入硅油。纳米锥和注入的光滑油层的组合产生了 SLIPS 涂层,该涂层具有低阻抗 (4.68 k Ω ) 水平,有利于神经记录应用。电化学阻抗谱和等效电路模型也显示了涂层对记录部位的影响。细胞毒性研究表明,该涂层不具有任何细胞毒性潜力;因此,它对人体植入具有生物相容性。大鼠模型的体内(急性记录)神经记录也证实,噪音水平可以显著降低(近 50%),并且有助于慢性 ECoG 记录,以实现更广泛的神经信号记录应用。
电感器是一种具有频率相关阻抗特性的电气元件;电感器在低频时表现出低阻抗,在高频时表现出高阻抗。虽然“理想”运算放大器输出阻抗特性为零,但“实际”放大器的输出阻抗是电感性的,并且像电感器一样随着频率的增加而增加。EL5157 的输出阻抗如图 2 所示。使用运算放大器的应用中的一个常见挑战是驱动电容负载。之所以有挑战性,是因为运算放大器的电感输出与电容负载一起形成 LC 谐振槽拓扑,其中电容负载电抗与电感驱动阻抗一起导致当反馈围绕环路闭合时产生额外的相位滞后。降低相位裕度会导致放大器振荡的可能性。振荡时,放大器会变得非常热,并且可能会自毁。针对这一挑战,有几个非常著名的解决方案。1) 最简单的解决方案是在输出端串联一个电阻,以强制反馈来自放大器的直接输出,同时隔离无功负载。这种方法的代价是牺牲负载上少量的输出电压摆幅。2) 另一个直接的解决方案是应用“缓冲网络”。缓冲网络是一个与电容负载并联的电阻和电容,在负载上提供电阻阻抗以减少输出相移;提供额外的稳定性。
在这项研究中,我们报告了一种可柔性的4通道微电极探针,该探针涂有高度多孔和可靠的纳米复合材料的聚(3,4-乙基二氧噻吩)(PEDOT)(PEDOT)和碳纳米纤维(CNF),作为固体掺杂模板,用于固体掺杂模板,以实现高强度录制效果。通过原位电化学聚合技术开发了一种简单而良好的控制策略,该技术在灵活的4通道金微电极探针上创建PEDOT和CNF的多孔网络。不同的形态和电化学特征表明,它们具有显着且优异的电化学特性,产生了相结合高表面积,低阻抗(16.8±2mΩ.mmghz时2 kHz)和升高的电荷入口功能(超过那些pure and Pure dup pul of Pude)的微电化学特性。此外,PEDOT-CNF复合电极表现出延长的双相电荷周期耐力,导致长期电刺激的物理分层或降解可忽略不计。在小鼠脑切片上进行体外测试表明,它们可以记录自发的振荡场电位以及单单元的动作电位,并允许安全地提供电刺激以唤起磁场电位。 PEDOT-CNF复合电极的组合上级电性能,耐用性和3D微结构拓扑表现出开发未来神经表面接口应用的杰出潜力。在小鼠脑切片上进行体外测试表明,它们可以记录自发的振荡场电位以及单单元的动作电位,并允许安全地提供电刺激以唤起磁场电位。PEDOT-CNF复合电极的组合上级电性能,耐用性和3D微结构拓扑表现出开发未来神经表面接口应用的杰出潜力。
扬声器应采用双向表面贴装设计,带有内部无源分频器和 60W 低插入损耗 70/100V 变压器,用于恒压分布式线路。 6 英寸矿物填充聚丙烯低音扬声器,带丁基橡胶环绕和 1 英寸 (25 毫米) 钛圆顶,带磁流体冷却钕磁铁系统,应安装在专有注塑 ABS、防紫外线褪色外壳中。外壳的防尘防溅等级应超过 IEC60529 IP-65,防盐防潮等级应超过 Mil STD 810G。内置密封输入面板盖和粉末涂层铝格栅。扬声器颜色应为 RAL 9016(白色)或 RAL 9017(黑色)。设备应附带防滑 U 型支架,该支架的粉末涂层与外壳颜色相同。扬声器应具有可选的滚花球形接头云台安装系统,并带有快速连接/拆卸机制。扬声器应符合以下安全标准:CE。扬声器应满足以下性能规格:轴上系统频率范围应为 57 Hz 至 20 kHz (-10 dB)。在建议使用高通保护的全空间环境中,宽带灵敏度应为 89 dB(1m 处为 2.83 V)SPL。长期功率处理额定值为 EIA-426B 中定义的 80W。最大连续输出应为 108 dB SPL,最大峰值输出应为 114 dB SPL。标称覆盖模式应为 100 度锥形。变压器应具有 60W、30W、15W、7.5W(3.8W 70V)的功率抽头,外加 8 欧姆旁路,可使用机箱背面的滑动开关进行选择。扬声器 Euroblock 输入连接应允许直接连接到 70 伏、100 伏或低阻抗放大器。扬声器外形尺寸为 13.90" x 7.73" x 8.66" (353mm x 196mm x 220mm),单位净重为 12.02lbs (5.45kg),保修期为 5 年。扬声器为 Atlas + Fyne FS-6T 表面安装扬声器。
TA2020-020 是一款功率(高电流)放大器,工作在相对较高的开关频率下。放大器的输出在驱动高电流的同时,以高速在电源电压和地之间切换。该高频数字信号通过 LC 低通滤波器,以恢复放大的音频信号。由于放大器必须驱动电感 LC 输出滤波器和扬声器负载,因此放大器输出可能被输出电感中的能量拉高至电源电压以上和地以下。为避免 TA2020-020 受到可能造成损坏的电压应力,良好的印刷电路板布局至关重要。建议在所有应用中使用 Tripath 的布局和应用电路,并且只有在仔细分析任何更改的影响后才可以偏离。下图是 Tripath TA2020-020 评估板。板上最关键的组件是电源去耦电容。电容 C674 和 C451 必须放置在引脚 22 (VDD2) 和 19 (PGND2) 的旁边,如图所示。同样,电容 C673 和 C451B 必须放置在引脚 25 (VDD1) 和 28 (PGND1) 的旁边,如图所示。这些电源去耦电容不仅有助于抑制电源噪声,更重要的是,它们可以吸收由放大器输出过冲引起的 VDD 引脚上的电压尖峰。类似地,肖特基二极管 D1、D2、D3 和 D4 可最大程度降低相对于 VDD 的过冲,肖特基二极管 D702、D703、D704 和 D728 可最大程度降低相对于电源接地的下冲。为了获得最大效果,这些二极管必须位于输出引脚附近,并返回到各自的 VDD 或 PGND 引脚。二极管 D1、D2、D3 和 D4 仅适用于 VDD>13.5V 的应用。在高电流开关事件(例如短路输出或在高电平下驱动低阻抗)期间,输出电感器反激也可能导致电压过冲。如果这些电容器和二极管距离引脚不够近,则可能会对部件造成电气过应力,从而可能导致 TA2020-020 永久损坏。输出电感器 L389、L390、L398 和 L399 应放置在靠近 TA2020-020 的位置,而不会影响靠近放置的电源去耦电容器和二极管的位置。将输出电感器放置在靠近 TA2020-020 输出引脚的位置是为了减少开关输出的走线长度。遵循此准则将有助于减少辐射发射。
1.0 一般说明 PVX-2506 脉冲发生器设计用于对高达 50 伏和 10 安的半导体器件进行脉冲 IV(电流-电压)特性分析。它也非常适合需要高电流、精密电压脉冲的其他应用。半导体器件的 IV 特性是频率和温度的函数。曲线追踪器和其他“DC”测试系统通常会逐步通过一系列栅极电压,并在每个栅极电压下扫描整个测量范围内的漏极电压。该器件在每个点基本上达到热平衡和电子(半导体陷阱)平衡,产生与实际 RF 操作特性不同的测试特性。通过使用 PVX-2506 对器件进行脉冲处理并在脉冲期间进行测量,可以在器件升温之前进行测量。这可以避免与传统“DC”测试相关的热效应,更接近器件在高频下运行时的特性,并且不会激活半导体“陷阱”。 PVX-2506 采用双向 MOSFET 输出级设计,采用 DEI 的 DE 系列快速功率 MOSFET。此设计提供快速上升和下降时间,过冲、下冲和振铃最小,稳定时间快。这种受控电压波形允许被测设备 (DUT) 在几百纳秒内稳定电压,从而允许在设备开始加热之前进行 IV 测量。可以将静态(偏置)电压施加到脉冲发生器,允许 DUT 保持在非零电压,然后在此电压之上或之下脉冲。PVX-2506 需要输入门信号、脉冲 (VHIGH) 和可选静态 (VLOW) 直流电源输入。输出脉冲宽度和频率由输入门信号控制。输出电压幅度由输入 VHIGH 和可选 VLOW 直流电源幅度控制。前面板控制和监视器提供了在脉冲模式下运行或切换到直流模式的灵活性,在该模式下,VHIGH 电源产生的直流电压直接施加到 DUT。提供集成仪器质量电压和电流探头,以方便脉冲数据采集。输出脉冲通过创新的低阻抗电缆发射。该电缆的设计保持了输出脉冲的保真度,而不会引入脉冲失真或振铃,并提供了一种方便的方法来
使用高度复杂的微电子,需要一贯实施的反干扰和布线概念。这变得越重要,建筑物的紧凑程度就越大,对现代机器性能的需求就越高。以下安装说明和建议适用于“普通工业环境”。对于所有干扰环境,没有理想的解决方案。应用以下措施时,编码器应处于完美的工作状态:•在串行线的开始和结束时,串行线终止了串行线(在接收/传输和接收/传输之间)(例如,控件和最后一个编码器)。•编码器的接线应与能量线的距离很大,这可能会引起干扰。•屏幕的电缆横截面至少4mm²。•电缆横截面至少0,14mm²。•屏幕的接线和0 V的接线应在可能的情况下径向排列。•请勿扭结或堵塞电缆。•遵守数据表中给出的最小弯曲半径,并避免拉伸和剪切负荷。操作说明由Pepperl+Fuchs制造的每个编码器都使工厂处于完美状态。为了确保这种质量以及无故的操作,必须考虑以下规范:•避免对外壳,尤其是对编码器轴以及编码器轴的轴向和径向超负荷的影响。•只有使用合适的耦合,才能保证编码器的准确性和使用寿命。•必须同时打开和关闭编码器和后续设备的操作电压(例如,控制设备)。•任何接线工作都必须在死亡情况下使用系统进行。•不得超过最大工作电压。这些设备必须以超低安全电压操作。关于将电筛查免疫与植物干扰的免疫力有关的注释取决于正确的筛选。在此字段中,安装故障经常发生。通常仅将屏幕应用于一侧,然后用电线将其焊接到接地端子上,这是LF工程中的有效过程。但是,如果有EMC,则适用HF工程规则。HF工程中的一个基本目标是将HF能量以尽可能低的阻抗传递到地球,以其他方式将能量放入电缆中。通过与金属表面的大面连接实现了低阻抗。必须观察到以下说明:•如果没有等值电流的风险,则将屏幕涂在大地面上的“普通地球”上。•必须将屏幕通过隔热材料后面,并且必须夹在张力缓解以下的大表面上。•如果电缆连接到螺丝型端子,则必须将张力缓解连接到接地的表面。•如果使用插头,则仅应安装金属化的插头(例如带有金属化外壳的子D插头)。请观察张力缓解与住房的直接连接。
抗干扰措施 使用高度复杂的微电子器件需要始终实施抗干扰和布线概念。现代机器的结构越紧凑,对性能的要求越高,这一点就变得越重要。以下安装说明和建议适用于“正常工业环境”。没有一种解决方案适合所有干扰环境。当采用以下措施时,编码器应处于完美的工作状态: • 在串行线的开始和结束处(例如,控制和最后一个编码器)用 120 电阻器(接收/发送和接收/发送之间)终止串行线。 • 编码器的接线应远离可能造成干扰的电源线。 • 屏蔽电缆横截面积至少为 4 mm²。 • 电缆横截面积至少为 0.14 mm²。 • 屏蔽和 0 V 的接线应尽可能呈放射状排列。 • 不要扭结或卡住电缆。 • 遵守数据表中给出的最小弯曲半径,避免拉伸和剪切载荷。 操作说明 Pepperl+Fuchs 制造的每个编码器都处于完美状态。为了确保这种质量以及无故障运行,必须考虑以下规范: • 避免对外壳(特别是编码器轴)造成任何冲击,以及避免编码器轴的轴向和径向过载。 • 只有在使用合适的联轴器时,才能保证编码器的精度和使用寿命。 • 编码器和后续设备(例如控制)的工作电压必须同时打开和关闭。 • 任何接线工作都必须在系统处于死区的情况下进行。 • 不得超过最大工作电压。设备必须在超低安全电压下运行。 连接电气屏蔽的注意事项 设备的抗干扰能力取决于正确的屏蔽。在这个领域,安装故障经常发生。通常只在一侧应用屏蔽,然后用导线焊接到接地端子,这是 LF 工程中的有效程序。但是,在 EMC 的情况下,适用 HF 工程规则。HF 工程的一个基本目标是以尽可能低的阻抗将 HF 能量传递到地面,否则能量会释放到电缆中。通过与金属表面的大面积连接可实现低阻抗。必须遵守以下说明:• 如果不存在等电位电流风险,则将两侧的屏蔽层大面积地连接到“公共接地”。• 屏蔽层必须穿过绝缘层后面,并且必须夹在张力释放器下方的大表面上。• 如果电缆连接到螺钉型端子,则张力释放器必须连接到接地表面。• 如果使用插头,则应仅安装金属插头(例如带有金属外壳的 D 型插头)。请注意张力释放器与外壳的直接连接。
反干扰测量高度复杂的微电子的使用需要一贯实施的反干扰和布线概念。这变得越重要,建筑物的紧凑程度就越大,对现代机器性能的需求就越高。以下安装说明和建议适用于“普通工业环境”。对于所有干扰环境,没有理想的解决方案。应用以下措施时,编码器应处于完美的工作状态:•在串行线的开始和结束时,串行线终止了串行线(在接收/传输和接收/传输之间)(例如,控件和最后一个编码器)。•编码器的接线应与能量线的距离很大,这可能会引起干扰。•屏幕的电缆横截面至少4mm²。•电缆横截面至少0,14mm²。•屏幕的接线和0 V的接线应在可能的情况下径向排列。•请勿扭结或堵塞电缆。•遵守数据表中给出的最小弯曲半径,并避免拉伸和剪切负荷。操作说明由Pepperl+Fuchs制造的每个编码器都使工厂处于完美状态。为了确保这种质量以及无故的操作,必须考虑以下规范:•避免对外壳,尤其是对编码器轴以及编码器轴的轴向和径向超负荷的影响。•任何接线工作都必须在死亡情况下使用系统进行。•只有使用合适的耦合,才能保证编码器的准确性和使用寿命。•必须同时打开和关闭编码器和后续设备的操作电压(例如,控制设备)。•不得超过最大工作电压。这些设备必须以超低安全电压操作。关于将电筛查免疫与植物干扰的免疫力有关的注释取决于正确的筛选。在此字段中,安装故障经常发生。通常仅将屏幕应用于一侧,然后用电线将其焊接到接地端子上,这是LF工程中的有效过程。但是,如果有EMC,则适用HF工程规则。HF工程中的一个基本目标是将HF能量以尽可能低的阻抗传递到地球,以其他方式将能量放入电缆中。通过与金属表面的大面连接实现了低阻抗。必须观察到以下说明:•如果没有等值电流的风险,则将屏幕涂在大地面上的“普通地球”上。•必须将屏幕通过隔热材料后面,并且必须夹在张力缓解以下的大表面上。•如果电缆连接到螺丝型端子,则必须将张力缓解连接到接地的表面。•如果使用插头,则仅应安装金属化的插头(例如带有金属化外壳的子D插头)。请观察张力缓解与住房的直接连接。
反干扰测量高度复杂的微电子的使用需要一贯实施的反干扰和布线概念。这变得越重要,建筑物的紧凑程度就越大,对现代机器性能的需求越高。以下安装说明和建议适用于“普通工业环境”。对于所有干扰环境,没有理想的解决方案。应用以下措施时,编码器应处于完美的工作状态:•在串行线的开始和结束时,串行线终止了串行线(在接收/传输和接收/传输之间)(例如,控件和最后一个编码器)。•编码器的接线应与能量线的距离很大,这可能会引起干扰。•屏幕的电缆横截面至少4mm²。•电缆横截面至少0,14mm²。•屏幕的接线和0 V的接线应在可能的情况下径向排列。•请勿扭结或堵塞电缆。•遵守数据表中给出的最小弯曲半径,并避免拉伸和剪切负荷。操作说明由Pepperl+Fuchs制造的每个编码器都使工厂处于完美状态。为了确保这种质量以及无故的操作,必须考虑以下规范:•避免对外壳,尤其是对编码器轴以及编码器轴的轴向和径向超负荷的影响。•任何接线工作都必须在死亡情况下使用系统进行。•只有使用合适的耦合,才能保证编码器的准确性和使用寿命。•必须同时打开和关闭编码器和后续设备的操作电压(例如,控制设备)。•不得超过最大工作电压。这些设备必须以超低安全电压操作。关于将电筛查免疫与植物干扰的免疫力有关的注释取决于正确的筛选。在此字段中,安装故障经常发生。通常仅将屏幕应用于一侧,然后用电线将其焊接到接地端子上,这是LF工程中的有效过程。但是,如果有EMC,则适用HF工程规则。HF工程中的一个基本目标是将HF能量以尽可能低的阻抗传递到地球,以其他方式将能量放入电缆中。通过与金属表面的大面连接实现了低阻抗。必须观察到以下说明:•如果没有等值电流的风险,则将屏幕涂在大地面上的“普通地球”上。•必须将屏幕通过隔热材料后面,并且必须夹在张力缓解以下的大表面上。•如果电缆连接到螺丝型端子,则必须将张力缓解连接到接地的表面。•如果使用插头,则仅应安装金属化的插头(例如带有金属化外壳的子D插头)。请观察张力缓解与住房的直接连接。