简介:近几十年来,人们对可穿戴设备的兴趣与日俱增,因为它们能够远程实时监测患者的生命体征 [1]。大多数可穿戴设备的功能仅依赖于电池供电。为了解决这一限制,必须开发出对可穿戴设备非常高效的能量收集系统 [2]。能量收集是收集、转换和输送任何设备可用能量的系统过程。近年来,研究人员已经展示了各种类型的机械能量收集器作为可穿戴平台,包括高度可拉伸的压电能量收集器 [3, 4]、柔性压电纳米发电机 [5, 6] 和基于皮肤的摩擦电纳米发电机 [7]。此外,热能也可以成为可穿戴能量收集应用的可靠来源,因为它的温度恒定在 37°C 左右 [2]。热电发电机 (TEG) 的工作原理是塞贝克效应,可以有效地将设备热侧和冷侧之间的热梯度转换为电能 [8, 9, 27]。人体是一个持续的热量发生器,人体和周围环境之间通常存在温差 [10]。较低的环境温度、空气对流或佩戴者活动较多可以显著增加所收集的能量 [11]。如果 TEG 可以收集人体释放的所有热量(根据身体活动不同,热量范围从 60 到 180 W),则产生的功率将在 0.6–1.8 W 左右 [12]。这个功率足以为许多可穿戴传感器提供能量。近年来,还开发了柔性 TEG,例如 Ren 等人报道的自修复 TEG 系统 [13]。可穿戴热电技术的显著现代应用包括但不限于手表式热电和血氧仪、柔性热电心电图检测器、热电助听器、温度检测设备和智能服装系统 [14]。可穿戴和可植入设备领域(包括生物医学传感器)因其在健康监测、疾病预防、诊断和治疗中的关键应用而引起了人们的极大兴趣 [15]。研究人员展示的可穿戴生物医学传感器技术的最新进展包括但不限于被动无线呼吸传感器、耳内脑电图系统和用于闭环深部脑刺激的无线唤醒/睡眠识别腕带 [16–18]。然而,电池的有限容量和相当大的物理尺寸分别对其寿命和整体尺寸造成了限制。Dagdeviren 等人(2017 年) [19] 和 Zhang 等人(2018 年) [20]。 (2021)[20] 表明从生物体中获取能量是一个可行的解决方案,主要强调自供电生物医学设备的开发。
摘要:本文提出了一种基于可再生能源的微电网容量规划框架,该框架由混合电池储能系统支持,该系统由三种不同类型的电池组成,包括锂离子 (Li-ion)、铅酸 (LA) 和用于为电动汽车 (EV) 充电站供电的二次锂离子电池。该框架的目标是确定风力发电系统、光伏发电系统和混合电池储能系统 (HBESS) 的最佳规模,同时降低成本。该框架被表述为混合整数线性规划 (MILP) 问题,其中包含电池老化和每年未满足负载量的约束。通过对各种场景进行研究来管理系统不确定性,这些不确定性由生成对抗网络 (GAN) 和针对风速、全球水平辐射和电动汽车充电负载的 k 均值聚类算法生成和减少。研究针对三种未满足负载水平进行,并针对这些可靠性水平比较输出。结果表明,混合储能的成本低于单个电池技术(与锂离子相比低 21%,与铅酸电池相比低 4.6%,与二次锂离子电池相比低 6%)。此外,通过使用 HBESS,铅酸电池的容量衰减会降低(未满足负载水平分别为 0、1%、5%、4.2%、6.1% 和 9.7%),并且系统的更换会随着衰减的减少而推迟。
摘要:减少二氧化碳排放和避免全球气候变化需要电力生产行业转向依赖非碳能源。此外,减轻微电网中的鸭形曲线效应需要开发独立于电网的建筑。对北德克萨斯州地区一千座独立于电网的建筑群进行了计算,该地区夏季的空调需求很高。电力需求与风力涡轮机、光伏电池或氢气罐中储存的能量产生的能量供应相平衡。结果表明,在运行一台风力涡轮机的情况下,每座建筑必须配备额定容量为 10.2 kW 的光伏电池和一个容量为 5.2 m 3 的氢气罐,才能满足建筑社区的每小时需求。增加更多风力涡轮机会显著降低所需的光伏额定值,但会增加所需的存储量。投资建筑物的节能措施会显著降低所需的存储容量和光伏电池额定值。
摘要:本文研究了在使用可再生能源和储能技术的建筑环境中,电池技术在尺寸和空间要求方面的建筑影响。随着世界向低碳未来过渡,这些方面将特别受到关注。本文首次重点研究了提供特定存储特性所需的存储系统的物理尺寸。该研究采用了定量案例研究方法,重点研究了基于 2030 年潜在技术和能源消耗情景的九种电池技术。考虑到亚日自主期,探讨了不同住宅建筑规模的本地分布规模。介绍了 2030 年情景中的四个案例研究。对于每个案例研究,评估了每种技术的标称容量、空间要求和成本。考虑到这些技术在这些方面的适用性以及它们在不同规模下的适用性,得出了这些技术的示意图。研究表明,空间和结构要求的建筑影响在某些情况下很重要,而在其他情况下可以忽略不计,锂离子和锌空气技术的空间要求最小。
摘要:本文研究了在使用可再生能源和储能技术的建筑环境中,电池技术在尺寸和空间要求方面的建筑影响。随着世界向低碳未来过渡,这些方面将特别受到关注。本文首次重点研究了提供特定存储特性所需的存储系统的物理尺寸。该研究采用了定量案例研究方法,重点研究了基于 2030 年潜在技术和能源消耗情景的九种电池技术。考虑到亚日自主期,探讨了不同住宅建筑规模的本地分布规模。介绍了 2030 年情景中的四个案例研究。对于每个案例研究,评估了每种技术的标称容量、空间要求和成本。考虑到这些技术在这些方面的适用性以及它们在不同规模下的适用性,得出了这些技术的示意图。研究表明,空间和结构要求的建筑影响在某些情况下很重要,而在其他情况下可以忽略不计,锂离子和锌空气技术的空间要求最小。
特征▪闭合头,浮顶样式,可旋转▪简单且安全:一个键操作概念,用于控制所有工具功能▪舒适且安全的单手操作,这要归功于具有2个成分的塑料外壳,带有柔软的抓地力▪轻松工作,因此,由于操作完整时,自动撤回了,当操作通过LED
电池供电的容器还进入了渡轮横梁短或带有内燃机(ICE)的混合装置中的运输部门。短船,例如渡轮艾伦(Ellen),奥罗拉(Aurora)和泰乔·布拉(Tycho Brahe),已经从事商业运营了几年。4,5这些渡轮的安装容量约为4 MWH,足以使船只被部署的短海通道。2023年,Cosco在长江河上运行的电池电容器容器,安装了50 MWH的电池容量。6,要允许足够短的持续时间进行能源补充,船只设计师预见了使用集装箱电池解决方案进行电池交换概念。这个概念已经用于在莱茵河上运行的内陆水道容器,但规模较小。7
减轻收获后的粮食损失可能会为农民带来经济利益,增加粮食安全并减少有机废物的甲烷排放。每年,尽管该国在2020年全球饥饿指数中排名第94位,估计在印度生产的水果和蔬菜中有30%被丢失或浪费(HLPE,2014年; Agarwal等人,2021年)。印度的收获后粮食损失的几乎一半是由于缺乏可靠的冷链,冷藏储存设施,运输和商品销售技术的综合网络,这些网络维持从收获到消费者的食品质量(Peters等人,2019年)。冷链技术是能量密集型的,通常由化石燃料提供动力。近年来,人们一直关注清洁能源的冷链解决方案,包括可再生能源动力的冷藏设施,这些储存设施将在收获后存储商品。
将现有程序(P1,P2或P3)分配给一周中的一个或多天。•按键1菜单将光标放在prog下。一周中七天的指标闪烁。•按键4 +选择哪一天或几天,以将程序分配给。使用OK键确认。•P1闪烁。按键4 +选择要应用的程序。使用OK键确认。为例,将P2分配给五个工作日的组,然后将P1分配给两个周末的小组:•按KEY 1菜单将光标置于Prog下。一周中七天的指标闪烁。•按键4 +选择以影响五天的组(五天闪烁)。使用OK键确认。•P1闪烁。按键4 +选择(P2闪烁)。使用OK键确认。•按键4 +选择2个周末(2个周末闪烁的组)组。使用OK键确认。•P1闪烁。使用OK键确认。恒温器返回自动模式。
摘要:混合可再生能源系统是小型能源社区能源供应的最佳解决方案。其中一个关键问题是这些系统与室外气候条件的强相关性。目标是使当地社区越来越独立于能源。为此,对全球 48 个气候各异的地区为小型办公社区供电的混合光伏 (PV)-风能系统的行为进行了深入分析。系统大小各不相同,假设为独立或并网,总共有 343 种系统电源配置。当 PV 明显优于风能时,可获得最高的满意负荷分数 (SLF) 值;这种趋势在干燥和大陆性气候中更为明显(根据柯本气候分类为 B 区和 D 区)。利用率 (UF) 值很少达到 1,在仅风能或仅 PV 配置中从未达到过。在所有气候条件下,电网能量相互作用因子 (GEIF) 值永远不会达到零,但非常接近零。电网连接系统的效益成本比 (BCR) 明显高于独立系统。